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Grover’s Algorithm Quantum search

Quantum search: quadratic speedup

I Performs a search over an unordered
set of N = 2n items to find the unique
element that satisfies some condition

I Best classical algorithm requires O(N)
time

I Grover’s algorithm performs the search
in only O(

√
N) operations, a

quadratic speedup

I If the algorithm were to run in a finite
power of O(lgN) steps, then it would
provide an algorithm in BQP for
NP-complete problems

I But no, Grover’s algorithm is optimal
for a quantum computer
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Grover’s Algorithm How it works

Step 1: Attain equal superposition

I Begin with a quantum register of n qubits, where n is the number of
qubits necessary to represent the search space of size 2n = N , all
initialized to |0〉:

|0〉⊗n = |0〉 (1)

I First step: put the system into an equal superposition of states,
achieved by applying the Hadamard transform H⊗n

|ψ〉 = H⊗n |0〉⊗n =
1√
2n

2n−1∑
x=0

|x〉 (2)

I Requires Θ(lgN) = Θ(lg 2n) = Θ(n) operations, n applications of
the elementary Hadamard gate:
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Grover’s Algorithm How it works

Amplitude amplification: the Grover iteration

I Next series of transformations often referred to as the Grover iteration

I Bulk of the algorithm
I Performs amplitude amplification

I Selective shifting of the phase of one state of a quantum system, one
that satisfies some condition, at each iteration

I Performing a phase shift of π is equivalent to multiplying the amplitude
of that state by −1: amplitude for that state changes, but the
probability remains the same

I Subsequent transformations take advantage of difference in amplitude
to single state of differing phase, ultimately increasing the probability
of the system being in that state

I In order to achieve optimal probability that the state ultimately
observed is the correct one, want overall rotation of the phase to be
π
4 radians, which will occur on average after π

4

√
2n iterations

I The Grover iteration will be repeated π
4

√
2n times
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Grover’s Algorithm How it works

The Grover iteration: an oracle query

I First step in Grover iteration is a call to a quantum oracle, O, that
will modify the system depending on whether it is in the configuration
we are searching for

I An oracle is basically a black-box function, and this quantum oracle is
a quantum black-box, meaning it can observe and modify the system
without collapsing it to a classical state

I If the system is indeed in the correct state, then the oracle will rotate
the phase by π radians, otherwise it will do nothing

I In this way it marks the correct state for further modification by
subsequent operations

I The oracle’s effect on |x〉 may be written simply:

|x〉 O−→ (−1)f(x) |x〉 (3)

Where f(x) = 1 if x is the correct state, and f(x) = 0 otherwise
I The exact implementation of f(x) is dependent on the particular

search problem
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Grover’s Algorithm How it works

The Grover iteration: diffusion transform

I Grover refers to the next part of the iteration as the diffusion
transform

I Performs inversion about the average, transforming the amplitude of
each state so that it is as far above the average as it was below the
average prior to the transformation

I Consists of another application of the Hadamard transform H⊗n,
followed by a conditional phase shift that shifts every state except |0〉
by −1, followed by yet another Hadamard transform

I The conditional phase shift can be represented by the unitary
operator 2 |0〉 〈0| − I:

[2 |0〉 〈0| − I] |0〉 = 2 |0〉 〈0|0〉 − I = |0〉 (4a)

[2 |0〉 〈0| − I] |x〉 = 2 |0〉 〈0|x〉 − I = − |x〉 (4b)
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Grover’s Algorithm How it works

The Grover iteration: bringing it all together

I The entire diffusion transform, using the notation |ψ〉 from equation
2, can be written:

H⊗n [2 |0〉 〈0| − I]H⊗n = 2H⊗n |0〉 〈0|H⊗n − I = 2 |ψ〉 〈ψ| − I (5)

And the entire Grover iteration:

[2 |ψ〉 〈ψ| − I]O (6)

I The exact runtime of the oracle depends on the specific problem and
implementation, so a call to O is viewed as one elementary operation

I Total runtime of a single Grover iteration is O(n):
I O(2n) from the two Hadamard transforms
I O(n) gates to perform the conditional phase shift

I The runtime of Grover’s entire algorithm, performing
O(
√
N) = O(

√
2n) = O(2

n
2 ) iterations each requiring O(n) gates, is

O(2
n
2 ).
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Grover’s Algorithm How it works

Circuit diagram overview

I Once the Grover iteration has been performed O(
√
N) times, a

classical measurement is performed to determine the result, which will
be correct with probability O(1)

diffusion transform

|0〉 /n H⊗n

O
H⊗n 2 |0〉 〈0| − In H⊗n · · · NM






|1〉 H · · ·

repeat O(
√
N) ≈ π

4

√
N times

︷ ︸︸ ︷
︸ ︷︷ ︸
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Grover’s Algorithm A worked example

Grover’s algorithm on 3 qubits

I Consider a system consisting of N = 8 = 23 states

I The state we are searching for, x0, is represented by the bit string 011

I To describe this system, n = 3 qubits are required:

|x〉 = α0 |000〉+ α1 |001〉+ α2 |010〉+ α3 |011〉
+ α4 |100〉+ α5 |101〉+ α6 |110〉+ α7 |111〉

where αi is the amplitude of the state |i〉
I Grover’s algorithm begins with a system initialized to 0:

1 |000〉
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Grover’s Algorithm A worked example

Attain equal superposition

I apply the Hadamard transformation to obtain equal amplitudes
associated with each state of 1/

√
N = 1/

√
8 = 1/2

√
2, and thus also

equal probability of being in any of the 8 possible states:

H3 |000〉 =
1

2
√

2
|000〉+

1
2
√

2
|001〉+ . . .+

1
2
√

2
|111〉

=
1

2
√

2

7∑
x=0

|x〉

= |ψ〉

I Geometrically:

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

αψ = 1
2
√

2
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Grover’s Algorithm A worked example

Two Grover iterations: the first Hadamard

I It is optimal to perform 2 Grover iterations:
π
4

√
8 = 2π

4

√
2 = π

2

√
2 ≈ 2.22 rounds to 2 iterations.

I At each iteration, the first step is to query O, then perform inversion
about the average, the diffusion transform.

I The oracle query will negate the amplitude of the state |x0〉, in this
case |011〉, giving the configuration:

|x〉 =
1

2
√

2
|000〉+ 1

2
√

2
|001〉+ 1

2
√

2
|010〉− 1

2
√

2
|011〉+. . .+ 1

2
√

2
|111〉

I With geometric representation:

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

αψ = 1
2
√

2

α|011〉 = −1
2
√

2
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Grover’s Algorithm A worked example

Diffusion transform

I Now perform the diffusion transform 2 |ψ〉 〈ψ| − I, which will increase
the amplitudes by their difference from the average, decreasing if the
difference is negative:

[2 |ψ〉 〈ψ| − I] |x〉

= [2 |ψ〉 〈ψ| − I]
[
|ψ〉 − 2

2
√

2
|011〉

]
= 2 |ψ〉 〈ψ|ψ〉 − |ψ〉 − 2√

2
|ψ〉 〈ψ|011〉+

1√
2
|011〉

I Note that 〈ψ|ψ〉 = 8 1
2
√

2

[
1

2
√

2

]
= 1

I Since |011〉 is one of the basis vectors, we can use the identity
〈ψ|011〉 = 〈011|ψ〉 = 1

2
√

2
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Grover’s Algorithm A worked example

Diffusion transform continued

I Final result of the diffusion transform:

= 2 |ψ〉 − |ψ〉 − 2√
2

(
1

2
√

2

)
|ψ〉+

1√
2
|011〉

= |ψ〉 − 1
2
|ψ〉+

1√
2
|011〉

=
1
2
|ψ〉+

1√
2
|011〉

I Substituting for |ψ〉 gives:

=
1
2

[
1

2
√

2

7∑
x=0

|x〉

]
+

1√
2
|011〉

=
1

4
√

2

7∑
x=0
x 6=3

|x〉+
5

4
√

2
|011〉
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Grover’s Algorithm A worked example

Geometric result of the diffusion transform

I Can also be written:

|x〉 =
1

4
√

2
|000〉+ 1

4
√

2
|001〉+ 1

4
√

2
|010〉+ 5

4
√

2
|011〉+. . .+ 1

4
√

2
|111〉

I Geometric representation:

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

αψ = 1
2
√

2α|x〉 = 1
4
√

2

α|011〉 = 5
4
√

2
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Grover’s Algorithm A worked example

The second Grover iteration

I I will spare you the details, as they are very similar. Result:

[2 |ψ〉 〈ψ| − I]
[

1
2
|ψ〉 − 3

2
√

2
|011〉

]
= − 1

8
√

2

7∑
x=0
x 6=3

|x〉+
11

8
√

2
|011〉

I Longer format:

|x〉 = − 1
8
√

2
|000〉− 1

8
√

2
|001〉− 1

8
√

2
|010〉+ 11

8
√

2
|011〉−. . .− 1

8
√

2
|111〉

(7)
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Grover’s Algorithm A worked example

Geometrically, the success of the algorithm is clear

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

αψ = 1
2
√

2

α|x〉 = −1
8
√

2

α|011〉 = 11
8
√

2
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Grover’s Algorithm A worked example

Final answer

I When the system is observed, the probability that the state
representative of the corrct solution, |011〉, will be measured is

| 11
8
√

2
|2 = 121/128 ≈ 94.5%

I The probability of finding an incorrect state is

|−
√

7
8
√

2
|
2

= 7/128 ≈ 5.5%
I Grover’s algorithm is more than 17 times more likely to give the

correct answer than an incorrect one with an input size of N = 8
I Error only decreases as the input size increases

I Although Grover’s algorithm is probabilistic, the error truly becomes
negligible as N grows large.
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Simon’s algorithm Period-finding

Simon’s problem

I Simon’s problem is, given a function

f : {0, 1}n → {0, 1}n

known to be invariant under some n-bit XOR mask a, determine a

I In other words, determine a given:

f(x) = f(y)←→ x⊕ y ∈ {0n, a}

I One of the first problems for which a quantum algorithm was found
to provide exponential speedup over any classical algorithm

I Best classical algorithms, including probabilistic ones, require an
exponential Ω(2n/2) queries to the black-box function in order to
determine a

I Simon’s quantum algorithm solves this problem in polynomial time,
performing an optimal O(n) queries
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Simon’s algorithm Period-finding

Period-finding, like Shor

I Simon’s algorithm and Shor’s prime factorization algorithm solve a
similar problem: given a function f , find the period a of that function

I While Simon’s problem uses XOR to define the period, Shor’s uses
binary addition as the constraint on f

I These problems are more restricted cases of what is known as the
hidden subgroup problem, which corresponds to a number of
important problems in computer science

I Any formulation of the Abelian hidden subgroup problem can be
solved by a quantum computer requiring a number of operations
logarithmic in the size of the group

I The more general hidden subgroup problem is harder to solve:
I Analogous to the graph isomorphism problem, some shortest vector

problems in lattices,
I Currently no polynomial-time algorithms have been devised to solve

this problem
I Would be a breakthrough in quantum computing similar to Shor’s

discovery
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Simon’s algorithm How it works
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Simon’s algorithm How it works

More Hadamards, more oracle

I Overview of Simon’s algorithm by circuit diagram
I Hadamard gates are important

|0〉 /n H⊗n

Of(x)

H⊗n NM





|0〉 /n H⊗n NM
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Simon’s algorithm How it works

Equal superposition, again, and then an oracle query

I Given a function acting on n-bit strings, Simon’s algorithm begins by
initializing two n-bit registers to 0:

|0〉⊗n |0〉⊗n

I Then applying the Hadamard transform to the first register to attain
an equal superposition of states:

H⊗n |0〉 |0〉 =
1√
2n

∑
x∈{0,1}n

|x〉 |0〉

I Next, f(x) is queried on both the registers
I The oracle is implemented as a unitary operation that performs the

transformation Of(x) |x〉 |y〉 = |x〉 |f(x)⊕ y〉:

1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉
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Simon’s algorithm How it works

Mid-algorithm measurement?!

I Now the second register is measured
I Two possible cases to consider in determining the impact of that

measurment on the first register
I XOR mask a = 0n

I a = {0, 1}n
I If a = 0n, then f is injective: each value of x corresponds to a unique

value f(x)
I This means that the first register remains in an equal superposition;

Regardless of the measured value of f(x), x could be any bit string in
{0, 1}n with equal probability

I If a = {0, 1}n, measuring the second register determines a concrete
value of f(x), call it f(z), which limits the possible values of the first
register

I Two possible values of x such that f(x) = f(z): z and z ⊕ a:

1√
2
|z〉+

1√
2
|z ⊕ a〉
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Simon’s algorithm How it works

Extracting information about a: Hadamard, of course

I Since there will be no more operations on the second register, further
calculations will focus only on the first register.

I The next step is to isolate the information about a that is now stored
in the first register

I This can be done by applying the Hadamard transform again

I The Hadamard transform may be defined using the bitwise dot
product x · y as:

H⊗n |x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y |y〉
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Simon’s algorithm How it works

I Using this notation, the result of applying a second Hadamard
operation is:

H⊗n
[

1√
2
|z〉+

1√
2
|z ⊕ a〉

]
=

1√
2
H⊗n |z〉+

1√
2
H⊗n |z ⊕ a〉

=
1√
2

 1√
2n

∑
y∈{0,1}n

(−1)z·y |y〉

+
1√
2

 1√
2n

∑
y∈{0,1}n

(−1)(z⊕a)·y |y〉


=

1√
2n+1

∑
y∈{0,1}n

[
(−1)z·y + (−1)(z⊕a)·y

]
|y〉

=
1√

2n+1

∑
y∈{0,1}n

[
(−1)z·y + (−1)(z·y)⊕(a·y)

]
|y〉

=
1√

2n+1

∑
y∈{0,1}n

(−1)z·y [1 + (−1)a·y] |y〉
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Simon’s algorithm How it works

Final measurement

I Now the value of the first register is measured

I In the degenerate case where a = 0n (f is injective), a string will be
produced from {0, 1}n with uniform distribution

I In the case where x⊕ y 6= 0n, notice that either a · y = 0 or a · y = 1.
If a · y = 1, which gives:

1√
2n+1

∑
y∈{0,1}n

(−1)z·y
[
1 + (−1)1

]
|y〉 =

1√
2n+1

∑
y∈{0,1}n

(−1)z·y [0] |y〉

= 0 |y〉

I The amplitude, and thus probability, that a value of y such that
a · y = 1 is equal to 0, and so such a y will never be measured.
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Simon’s algorithm How it works

More on the final measurement

I Knowing that it will always be true that a · y = 0, the equation can
yet again be simplified:

1√
2n+1

∑
y∈{0,1}n

(−1)z·y
[
1 + (−1)0

]
|y〉 =

2√
2n+1

∑
y∈{0,1}n

(−1)z·y |y〉

=
1√

2n−1

∑
y∈{0,1}n

(−1)z·y |y〉

I So when a 6= 0n, the result will always be a string
y ∈ {0, 1}n : a · y = 0

I The amplitude associated with each value y is ±
√

21−n, giving the
probability: ∣∣∣∣ 1√

2n−1

∣∣∣∣2 =
∣∣∣∣ −1√

2n−1

∣∣∣∣2 =
1

2n−1
(8)

of observing any of the strings y such that a · y = 0
I A uniform distribution over the 2n−1 strings that satisfy a · y = 0.
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Simon’s algorithm How it works

Post-processing: solving a system of linear equations

I If Simon’s algorithm is executed n− 1 times, n− 1 strings y1, y2, . . . ,
yn−1 ∈ {0, 1}n can be observed, which form a system of n− 1 linear
equations in n unknowns of the form:

y1 · a = y11a1 + y12a2 + . . .+ y1nan = 0
y2 · a = y11a1 + y22a2 + . . .+ y2nan = 0

...

yn−1 · a = y(n−1)1a1 + y(n−1)2a2 + . . .+ y(n−1)nan = 0

I To find a from here is just a matter of solving for the n unknowns,
each a bit in a, in order to determine a as a whole

I Of course, this requires a system of n− 1 linearly independent
equations.
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Simon’s algorithm How it works

How to get a solvable system?

I The probability of observing the first string y0 is 21−n

I After another iteration of Simon’s algorithm, the probability of
observing another distinct bit string would be 1− 21−n

I The probability of observing n− 1 distinct values of y in a row, and
so a lower bound on the probability of obtaining n− 1 linearly
independent equations, is:

∞∏
n=1

[
1− 1

2n

]
≈ .2887881 >

1
4

I A linearly independent system of n− 1 equations, and from there the
value of a, can be obtained by repeating Simon’s algorithm no more
than 4n times

I Simon’s algorithm requires only O(n) queries to f in order to
determine a, while classical algorithms require exponential time
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Simon’s algorithm An example
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Simon’s algorithm An example

A 3-qubit example

I Now a worked example with n = 3, a = 110, and f(x) defined by the
following table:

x f(x)
000 101
001 010
010 000
011 110
100 000
101 110
110 101
111 010
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Simon’s algorithm An example

I
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Simon’s algorithm An example

I
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