Introduction to Quantum Computing Part II

Emma Strubell

http://cs.umaine.edu/~ema/quantum_tutorial.pdf

April 13, 2011

Overview

Grover's Algorithm

- Quantum search

■ How it works

- A worked example

Simon's algorithm
\square Period-finding

- How it works
- An example

Outline

Grover's Algorithm

■ Quantum search

- How it works

■ A worked example

Simon's algorithm

■ Period-finding

- How it works
- An example

Quantum search: quadratic speedup

- Performs a search over an unordered set of $N=2^{n}$ items to find the unique element that satisfies some condition
- Best classical algorithm requires $O(N)$ time
- Grover's algorithm performs the search in only $O(\sqrt{N})$ operations, a quadratic speedup

- If the algorithm were to run in a finite power of $O(\lg N)$ steps, then it would provide an algorithm in BQP for NP-complete problems
- But no, Grover's algorithm is optimal for a quantum computer

Outline

Grover's Algorithm

- Quantum search

■ How it works

- A worked example

Simon's algorithm

■ Period-finding

- How it works
- An example

Step 1: Attain equal superposition

- Begin with a quantum register of n qubits, where n is the number of qubits necessary to represent the search space of size $2^{n}=N$, all initialized to $|0\rangle$:

$$
\begin{equation*}
|0\rangle^{\otimes n}=|0\rangle \tag{1}
\end{equation*}
$$

- First step: put the system into an equal superposition of states, achieved by applying the Hadamard transform $H^{\otimes n}$

$$
\begin{equation*}
|\psi\rangle=H^{\otimes n}|0\rangle^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle \tag{2}
\end{equation*}
$$

- Requires $\Theta(\lg N)=\Theta\left(\lg 2^{n}\right)=\Theta(n)$ operations, n applications of the elementary Hadamard gate:

Amplitude amplification: the Grover iteration

- Next series of transformations often referred to as the Grover iteration
- Bulk of the algorithm
- Performs amplitude amplification
- Selective shifting of the phase of one state of a quantum system, one that satisfies some condition, at each iteration
- Performing a phase shift of π is equivalent to multiplying the amplitude of that state by -1 : amplitude for that state changes, but the probability remains the same
- Subsequent transformations take advantage of difference in amplitude to single state of differing phase, ultimately increasing the probability of the system being in that state
- In order to achieve optimal probability that the state ultimately observed is the correct one, want overall rotation of the phase to be $\frac{\pi}{4}$ radians, which will occur on average after $\frac{\pi}{4} \sqrt{2^{n}}$ iterations
- The Grover iteration will be repeated $\frac{\pi}{4} \sqrt{2^{n}}$ times

The Grover iteration: an oracle query

- First step in Grover iteration is a call to a quantum oracle, \mathcal{O}, that will modify the system depending on whether it is in the configuration we are searching for
- An oracle is basically a black-box function, and this quantum oracle is a quantum black-box, meaning it can observe and modify the system without collapsing it to a classical state
- If the system is indeed in the correct state, then the oracle will rotate the phase by π radians, otherwise it will do nothing
- In this way it marks the correct state for further modification by subsequent operations
- The oracle's effect on $|x\rangle$ may be written simply:

$$
\begin{equation*}
|x\rangle \xrightarrow{\mathcal{O}}(-1)^{f(x)}|x\rangle \tag{3}
\end{equation*}
$$

Where $f(x)=1$ if x is the correct state, and $f(x)=0$ otherwise

- The exact implementation of $f(x)$ is dependent on the particular search problem

The Grover iteration: diffusion transform

- Grover refers to the next part of the iteration as the diffusion transform
- Performs inversion about the average, transforming the amplitude of each state so that it is as far above the average as it was below the average prior to the transformation
- Consists of another application of the Hadamard transform $H^{\otimes n}$, followed by a conditional phase shift that shifts every state except $|0\rangle$ by -1 , followed by yet another Hadamard transform
- The conditional phase shift can be represented by the unitary operator $2|0\rangle\langle 0|-I$:

$$
\begin{array}{r}
{[2|0\rangle\langle 0|-I]|0\rangle=2|0\rangle\langle 0 \mid 0\rangle-I=|0\rangle} \\
{[2|0\rangle\langle 0|-I]|x\rangle=2|0\rangle\langle 0 \mid x\rangle-I=-|x\rangle} \tag{4b}
\end{array}
$$

The Grover iteration: bringing it all together

- The entire diffusion transform, using the notation $|\psi\rangle$ from equation 2 , can be written:

$$
\begin{equation*}
H^{\otimes n}[2|0\rangle\langle 0|-I] H^{\otimes n}=2 H^{\otimes n}|0\rangle\langle 0| H^{\otimes n}-I=2|\psi\rangle\langle\psi|-I \tag{5}
\end{equation*}
$$

And the entire Grover iteration:

$$
\begin{equation*}
[2|\psi\rangle\langle\psi|-I] \mathcal{O} \tag{6}
\end{equation*}
$$

- The exact runtime of the oracle depends on the specific problem and implementation, so a call to \mathcal{O} is viewed as one elementary operation
- Total runtime of a single Grover iteration is $O(n)$:
- $O(2 n)$ from the two Hadamard transforms
- $O(n)$ gates to perform the conditional phase shift
- The runtime of Grover's entire algorithm, performing $O(\sqrt{N})=O\left(\sqrt{2^{n}}\right)=O\left(2^{\frac{n}{2}}\right)$ iterations each requiring $O(n)$ gates, is $O\left(2^{\frac{n}{2}}\right)$.

Circuit diagram overview

- Once the Grover iteration has been performed $O(\sqrt{N})$ times, a classical measurement is performed to determine the result, which will be correct with probability $O(1)$

Outline

Grover's Algorithm

- Quantum search
- How it works
- A worked example

Simon's algorithm

- Period-finding
- How it works
- An example

Grover's algorithm on 3 qubits

- Consider a system consisting of $N=8=2^{3}$ states
- The state we are searching for, x_{0}, is represented by the bit string 011
- To describe this system, $n=3$ qubits are required:

$$
\begin{aligned}
|x\rangle & =\alpha_{0}|000\rangle+\alpha_{1}|001\rangle+\alpha_{2}|010\rangle+\alpha_{3}|011\rangle \\
& +\alpha_{4}|100\rangle+\alpha_{5}|101\rangle+\alpha_{6}|110\rangle+\alpha_{7}|111\rangle
\end{aligned}
$$

where α_{i} is the amplitude of the state $|i\rangle$

- Grover's algorithm begins with a system initialized to 0 :

$$
1|000\rangle
$$

Attain equal superposition

- apply the Hadamard transformation to obtain equal amplitudes associated with each state of $1 / \sqrt{N}=1 / \sqrt{8}=1 / 2 \sqrt{2}$, and thus also equal probability of being in any of the 8 possible states:

$$
\begin{aligned}
H^{3}|000\rangle & =\frac{1}{2 \sqrt{2}}|000\rangle+\frac{1}{2 \sqrt{2}}|001\rangle+\ldots+\frac{1}{2 \sqrt{2}}|111\rangle \\
& =\frac{1}{2 \sqrt{2}} \sum_{x=0}^{7}|x\rangle \\
& =|\psi\rangle
\end{aligned}
$$

- Geometrically:

$$
\begin{aligned}
& |000\rangle|001\rangle|010\rangle|011\rangle|100\rangle|101\rangle|110\rangle|111\rangle
\end{aligned}
$$

Two Grover iterations: the first Hadamard

- It is optimal to perform 2 Grover iterations:
$\frac{\pi}{4} \sqrt{8}=\frac{2 \pi}{4} \sqrt{2}=\frac{\pi}{2} \sqrt{2} \approx 2.22$ rounds to 2 iterations.
- At each iteration, the first step is to query \mathcal{O}, then perform inversion about the average, the diffusion transform.
- The oracle query will negate the amplitude of the state $\left|x_{0}\right\rangle$, in this case $|011\rangle$, giving the configuration:

$$
|x\rangle=\frac{1}{2 \sqrt{2}}|000\rangle+\frac{1}{2 \sqrt{2}}|001\rangle+\frac{1}{2 \sqrt{2}}|010\rangle-\frac{1}{2 \sqrt{2}}|011\rangle+\ldots+\frac{1}{2 \sqrt{2}}|111\rangle
$$

- With geometric representation:

Diffusion transform

- Now perform the diffusion transform $2|\psi\rangle\langle\psi|-I$, which will increase the amplitudes by their difference from the average, decreasing if the difference is negative:

$$
\begin{aligned}
& {[2|\psi\rangle\langle\psi|-I]|x\rangle } \\
= & {[2|\psi\rangle\langle\psi|-I]\left[|\psi\rangle-\frac{2}{2 \sqrt{2}}|011\rangle\right] } \\
= & 2|\psi\rangle\langle\psi \mid \psi\rangle-|\psi\rangle-\frac{2}{\sqrt{2}}|\psi\rangle\langle\psi \mid 011\rangle+\frac{1}{\sqrt{2}}|011\rangle
\end{aligned}
$$

- Note that $\langle\psi \mid \psi\rangle=8 \frac{1}{2 \sqrt{2}}\left[\frac{1}{2 \sqrt{2}}\right]=1$
- Since $|011\rangle$ is one of the basis vectors, we can use the identity $\langle\psi \mid 011\rangle=\langle 011 \mid \psi\rangle=\frac{1}{2 \sqrt{2}}$

Diffusion transform continued

- Final result of the diffusion transform:

$$
\begin{aligned}
& =2|\psi\rangle-|\psi\rangle-\frac{2}{\sqrt{2}}\left(\frac{1}{2 \sqrt{2}}\right)|\psi\rangle+\frac{1}{\sqrt{2}}|011\rangle \\
& =|\psi\rangle-\frac{1}{2}|\psi\rangle+\frac{1}{\sqrt{2}}|011\rangle \\
& =\frac{1}{2}|\psi\rangle+\frac{1}{\sqrt{2}}|011\rangle
\end{aligned}
$$

- Substituting for $|\psi\rangle$ gives:

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{2 \sqrt{2}} \sum_{x=0}^{7}|x\rangle\right]+\frac{1}{\sqrt{2}}|011\rangle \\
& =\frac{1}{4 \sqrt{2}} \sum_{\substack{x=0 \\
x \neq 3}}^{7}|x\rangle+\frac{5}{4 \sqrt{2}}|011\rangle
\end{aligned}
$$

Geometric result of the diffusion transform

- Can also be written:

$$
|x\rangle=\frac{1}{4 \sqrt{2}}|000\rangle+\frac{1}{4 \sqrt{2}}|001\rangle+\frac{1}{4 \sqrt{2}}|010\rangle+\frac{5}{4 \sqrt{2}}|011\rangle+\ldots+\frac{1}{4 \sqrt{2}}|111\rangle
$$

- Geometric representation:

$$
\begin{aligned}
& \alpha_{|011\rangle}=\frac{5}{4 \sqrt{2}}
\end{aligned}
$$

The second Grover iteration

- I will spare you the details, as they are very similar. Result:

$$
[2|\psi\rangle\langle\psi|-I]\left[\frac{1}{2}|\psi\rangle-\frac{3}{2 \sqrt{2}}|011\rangle\right]=-\frac{1}{8 \sqrt{2}} \sum_{\substack{x=0 \\ x \neq 3}}^{7}|x\rangle+\frac{11}{8 \sqrt{2}}|011\rangle
$$

- Longer format:

$$
\begin{equation*}
|x\rangle=-\frac{1}{8 \sqrt{2}}|000\rangle-\frac{1}{8 \sqrt{2}}|001\rangle-\frac{1}{8 \sqrt{2}}|010\rangle+\frac{11}{8 \sqrt{2}}|011\rangle-\ldots-\frac{1}{8 \sqrt{2}}|111\rangle \tag{7}
\end{equation*}
$$

Geometrically, the success of the algorithm is clear

$$
\begin{aligned}
& \alpha_{|011\rangle}=\frac{11}{8 \sqrt{2}} \\
& \alpha_{|x\rangle}=\frac{-1}{8 \sqrt{2}}-\cdots-1 \\
& \quad|000\rangle|001\rangle|010\rangle|011\rangle|100\rangle|101\rangle|110\rangle|11\rangle
\end{aligned}
$$

Final answer

- When the system is observed, the probability that the state representative of the corrct solution, $|011\rangle$, will be measured is $\left|\frac{11}{8 \sqrt{2}}\right|^{2}=121 / 128 \approx 94.5 \%$
- The probability of finding an incorrect state is $\left|\frac{-\sqrt{7}}{8 \sqrt{2}}\right|^{2}=7 / 128 \approx 5.5 \%$
- Grover's algorithm is more than 17 times more likely to give the correct answer than an incorrect one with an input size of $N=8$
- Error only decreases as the input size increases
- Although Grover's algorithm is probabilistic, the error truly becomes negligible as N grows large.

Outline

Grover's Algorithm

- Quantum search
- How it works

■ A worked example

Simon's algorithm

- Period-finding
- How it works
- An example

Simon's problem

- Simon's problem is, given a function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

known to be invariant under some n-bit XOR mask a, determine a

- In other words, determine a given:

$$
f(x)=f(y) \longleftrightarrow x \oplus y \in\left\{0^{n}, a\right\}
$$

- One of the first problems for which a quantum algorithm was found to provide exponential speedup over any classical algorithm
- Best classical algorithms, including probabilistic ones, require an exponential $\Omega\left(2^{n / 2}\right)$ queries to the black-box function in order to determine a
- Simon's quantum algorithm solves this problem in polynomial time, performing an optimal $O(n)$ queries

Period-finding, like Shor

- Simon's algorithm and Shor's prime factorization algorithm solve a similar problem: given a function f, find the period a of that function
- While Simon's problem uses XOR to define the period, Shor's uses binary addition as the constraint on f
- These problems are more restricted cases of what is known as the hidden subgroup problem, which corresponds to a number of important problems in computer science
- Any formulation of the Abelian hidden subgroup problem can be solved by a quantum computer requiring a number of operations logarithmic in the size of the group
- The more general hidden subgroup problem is harder to solve:
- Analogous to the graph isomorphism problem, some shortest vector problems in lattices,
- Currently no polynomial-time algorithms have been devised to solve this problem
- Would be a breakthrough in quantum computing similar to Shor's discovery

Outline

Grover's Algorithm

■ Quantum search

- How it works

■ A worked example

Simon's algorithm

- Period-finding

■ How it works

- An example

More Hadamards, more oracle

- Overview of Simon's algorithm by circuit diagram
- Hadamard gates are important

Equal superposition, again, and then an oracle query

- Given a function acting on n-bit strings, Simon's algorithm begins by initializing two n-bit registers to 0 :

$$
|0\rangle^{\otimes n}|0\rangle^{\otimes n}
$$

- Then applying the Hadamard transform to the first register to attain an equal superposition of states:

$$
H^{\otimes n}|0\rangle|0\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle
$$

- Next, $f(x)$ is queried on both the registers
- The oracle is implemented as a unitary operation that performs the transformation $\mathcal{O}_{f(x)}|x\rangle|y\rangle=|x\rangle|f(x) \oplus y\rangle$:

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

Mid-algorithm measurement?!

- Now the second register is measured
- Two possible cases to consider in determining the impact of that measurment on the first register
- XOR mask $a=0^{n}$
- $a=\{0,1\}^{n}$
- If $a=0^{n}$, then f is injective: each value of x corresponds to a unique value $f(x)$
- This means that the first register remains in an equal superposition; Regardless of the measured value of $f(x), x$ could be any bit string in $\{0,1\}^{n}$ with equal probability
- If $a=\{0,1\}^{n}$, measuring the second register determines a concrete value of $f(x)$, call it $f(z)$, which limits the possible values of the first register
- Two possible values of x such that $f(x)=f(z): z$ and $z \oplus a$:

$$
\frac{1}{\sqrt{2}}|z\rangle+\frac{1}{\sqrt{2}}|z \oplus a\rangle
$$

Extracting information about a : Hadamard, of course

- Since there will be no more operations on the second register, further calculations will focus only on the first register.
- The next step is to isolate the information about a that is now stored in the first register
- This can be done by applying the Hadamard transform again
- The Hadamard transform may be defined using the bitwise dot product $x \cdot y$ as:

$$
H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle
$$

- Using this notation, the result of applying a second Hadamard operation is:

$$
\begin{aligned}
& H^{\otimes n}\left[\frac{1}{\sqrt{2}}|z\rangle+\frac{1}{\sqrt{2}}|z \oplus a\rangle\right] \\
= & \frac{1}{\sqrt{2}} H^{\otimes n}|z\rangle+\frac{1}{\sqrt{2}} H^{\otimes n}|z \oplus a\rangle \\
= & \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}|y\rangle\right]+\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{(z \oplus a) \cdot y}|y\rangle\right] \\
= & \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}\left[(-1)^{z \cdot y}+(-1)^{(z \oplus a) \cdot y}\right]|y\rangle \\
= & \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}\left[(-1)^{z \cdot y}+(-1)^{(z \cdot y) \oplus(a \cdot y)}\right]|y\rangle \\
= & \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}\left[1+(-1)^{a \cdot y}\right]|y\rangle
\end{aligned}
$$

Final measurement

- Now the value of the first register is measured
- In the degenerate case where $a=0^{n}$ (f is injective), a string will be produced from $\{0,1\}^{n}$ with uniform distribution
- In the case where $x \oplus y \neq 0^{n}$, notice that either $a \cdot y=0$ or $a \cdot y=1$. If $a \cdot y=1$, which gives:

$$
\begin{aligned}
\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}\left[1+(-1)^{1}\right]|y\rangle & =\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}[0]|y\rangle \\
& =0|y\rangle
\end{aligned}
$$

- The amplitude, and thus probability, that a value of y such that $a \cdot y=1$ is equal to 0 , and so such a y will never be measured.

More on the final measurement

- Knowing that it will always be true that $a \cdot y=0$, the equation can yet again be simplified:

$$
\begin{aligned}
\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}\left[1+(-1)^{0}\right]|y\rangle & =\frac{2}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}|y\rangle \\
& =\frac{1}{\sqrt{2^{n-1}}} \sum_{y \in\{0,1\}^{n}}(-1)^{z \cdot y}|y\rangle
\end{aligned}
$$

- So when $a \neq 0^{n}$, the result will always be a string $y \in\{0,1\}^{n}: a \cdot y=0$
- The amplitude associated with each value y is $\pm \sqrt{2^{1-n}}$, giving the probability:

$$
\begin{equation*}
\left|\frac{1}{\sqrt{2^{n-1}}}\right|^{2}=\left|\frac{-1}{\sqrt{2^{n-1}}}\right|^{2}=\frac{1}{2^{n-1}} \tag{8}
\end{equation*}
$$

of observing any of the strings y such that $a \cdot y=0$

- A uniform distribution over the 2^{n-1} strings that satisfy $a \cdot y=0$.

Post-processing: solving a system of linear equations

- If Simon's algorithm is executed $n-1$ times, $n-1$ strings y_{1}, y_{2}, \ldots, $y_{n-1} \in\{0,1\}^{n}$ can be observed, which form a system of $n-1$ linear equations in n unknowns of the form:

$$
\begin{aligned}
& y_{1} \cdot a=y_{11} a_{1}+y_{12} a_{2}+\ldots+y_{1 n} a_{n}=0 \\
& y_{2} \cdot a=y_{11} a_{1}+y_{22} a_{2}+\ldots+y_{2 n} a_{n}=0 \\
& \quad \vdots \\
& y_{n-1} \cdot a=y_{(n-1) 1} a_{1}+y_{(n-1) 2} a_{2}+\ldots+y_{(n-1) n} a_{n}=0
\end{aligned}
$$

- To find a from here is just a matter of solving for the n unknowns, each a bit in a, in order to determine a as a whole
- Of course, this requires a system of $n-1$ linearly independent equations.

How to get a solvable system?

- The probability of observing the first string y_{0} is 2^{1-n}
- After another iteration of Simon's algorithm, the probability of observing another distinct bit string would be $1-2^{1-n}$
- The probability of observing $n-1$ distinct values of y in a row, and so a lower bound on the probability of obtaining $n-1$ linearly independent equations, is:

$$
\prod_{n=1}^{\infty}\left[1-\frac{1}{2^{n}}\right] \approx .2887881>\frac{1}{4}
$$

- A linearly independent system of $n-1$ equations, and from there the value of a, can be obtained by repeating Simon's algorithm no more than $4 n$ times
- Simon's algorithm requires only $O(n)$ queries to f in order to determine a, while classical algorithms require exponential time

Outline

Grover's Algorithm

- Quantum search
- How it works

■ A worked example

Simon's algorithm

- Period-finding
- How it works
- An example

A 3-qubit example

- Now a worked example with $n=3, a=110$, and $f(x)$ defined by the following table:

x	$f(x)$
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

Image Credits

- Quantum dots:
http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/ the-road-to-a-quantum-computer-begins-with-a-quantum-dot
- Lov Grover: http://www.bell-labs.com/user/lkgrover/
- Jacques Hadamard http://www.math.uconn.edu/MathLinks/mathematicians_gallery.php?

