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QuEnii ceaIl
Quantum search: quadratic speedup

» Performs a search over an unordered
set of N = 2" items to find the unique
element that satisfies some condition

> Best classical algorithm requires O(N)
time

> Grover's algorithm performs the search
in only O(v/N) operations, a
quadratic speedup

» If the algorithm were to run in a finite
power of O(lg N) steps, then it would
provide an algorithm in BQP for
NP-complete problems

» But no, Grover's algorithm is optimal
for a quantum computer
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Grover's Algorithm How it works
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Step 1: Attain equal superposition

» Begin with a quantum register of n qubits, where n is the number of
qubits necessary to represent the search space of size 2" = N, all
initialized to |0):

10)*" = 10) (1)

» First step: put the system into an equal superposition of states,
achieved by applying the Hadamard transform H®"

2" —1

W) = H¥™|0)® \/2»,1 Z |z) (2)

» Requires ©(lg N) = ©(1g2™) = ©(n) operations, n applications of
the elementary Hadamard gate:
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Amplitude amplification: the Grover iteration

» Next series of transformations often referred to as the Grover iteration

» Bulk of the algorithm
» Performs amplitude amplification
» Selective shifting of the phase of one state of a quantum system, one
that satisfies some condition, at each iteration
» Performing a phase shift of 7 is equivalent to multiplying the amplitude
of that state by —1: amplitude for that state changes, but the
probability remains the same
» Subsequent transformations take advantage of difference in amplitude
to single state of differing phase, ultimately increasing the probability
of the system being in that state
» In order to achieve optimal probability that the state ultimately
observed is the correct one, want overall rotation of the phase to be
s

7 radians, which will occur on average after 712" iterations

» The Grover iteration will be repeated 7+/2" times
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The Grover iteration: an oracle query

|

First step in Grover iteration is a call to a quantum oracle, O, that
will modify the system depending on whether it is in the configuration
we are searching for

An oracle is basically a black-box function, and this quantum oracle is
a quantum black-box, meaning it can observe and modify the system
without collapsing it to a classical state

If the system is indeed in the correct state, then the oracle will rotate
the phase by 7 radians, otherwise it will do nothing

In this way it marks the correct state for further modification by
subsequent operations

The oracle’s effect on |x) may be written simply:

[2) = (1)) |a) (3)
Where f(z) = 1 if x is the correct state, and f(x) = 0 otherwise

» The exact implementation of f(z) is dependent on the particular

search problem
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The Grover iteration: diffusion transform

> Grover refers to the next part of the iteration as the diffusion
transform

» Performs inversion about the average, transforming the amplitude of
each state so that it is as far above the average as it was below the
average prior to the transformation

» Consists of another application of the Hadamard transform H®",
followed by a conditional phase shift that shifts every state except |0)
by —1, followed by yet another Hadamard transform

» The conditional phase shift can be represented by the unitary
operator 2 |0) (0] — I:

[210) 0] — 1] ]0) = 2]0) {0[0) — I = |0) (4a)
[210) (O] = ]|z} = 2[0) (Of) — I = — |z) (4b)
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The Grover iteration: bringing it all together

» The entire diffusion transform, using the notation |¢)) from equation
2, can be written:

HE®™[210) (0] — I) H®™ = 2H®™ |0) (0| H®™ — T = 2 |¢b) (¢| — I (5)
And the entire Grover iteration:

219) (¢ = 1]O (6)

» The exact runtime of the oracle depends on the specific problem and
implementation, so a call to O is viewed as one elementary operation
» Total runtime of a single Grover iteration is O(n):
» O(2n) from the two Hadamard transforms
» O(n) gates to perform the conditional phase shift
> The runtime of Grover's entire algorithm, performing
O(VN) = O(y/2") = O(27%) iterations each requiring O(n) gates, is
0(27).
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Grover's Algorithm How it works

Circuit diagram overview

» Once the Grover iteration has been performed O(v/N) times, a
classical measurement is performed to determine the result, which will
be correct with probability O(1)

diffusion transform

0) ] fren 210) (0] — I,
1) ——{H]—

repeat O(V'N) ~ Z+/N times
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Grover's algorithm on 3 qubits

» Consider a system consisting of N = 8 = 23 states
» The state we are searching for, x, is represented by the bit string 011

» To describe this system, n = 3 qubits are required:

|x) = ap |000) + a1 [001) + ag |010) 4+ 3 |011)
+ g |100) + a5 [101) + g [110) + a7 |111)

where «; is the amplitude of the state |7)

> Grover's algorithm begins with a system initialized to O:

1(000)
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Attain equal superposition

» apply the Hadamard transformation to obtain equal amplitudes
associated with each state of 1/v/N = 1/4/8 = 1/2/2, and thus also
equal probability of being in any of the 8 possible states:

H?31000) = )+

)+ )

1
—— |000 1001 1111
2V/2 f \f

1 J
=2\/§;)Ix>
= [¢)

» Geometrically:
1

8 Y O B M

000) |001) |010) |011) |100) |101) |110) |111)
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Two Grover iterations: the first Hadamard

» It is optimal to perform 2 Grover iterations:
g\/g = %T”\/i = gﬂ =~ 2.22 rounds to 2 iterations.

» At each iteration, the first step is to query O, then perform inversion
about the average, the diffusion transform.

» The oracle query will negate the amplitude of the state |z¢), in this
case \011> giving the configuration:

1
011)+. . .+ —— [111)

000—1—7001
000) 5= 001)+ N

9= 505

» With geometric representation:

1
2\[]010> 2\/§

1000) |001) 010) [011) [100) |101) [110) |111)
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Diffusion transform

» Now perform the diffusion transform 2 [) (¢)| — I, which will increase
the amplitudes by their difference from the average, decreasing if the
difference is negative:

2 1) (] — 1)
— 21) (] — 1] W e ronﬂ

=2[9) (Yly) — |¢) - ﬁ [¥) (4[011) + \2 |011)

> Note that (y|¢) = 81 1

2v/2 [2f ]
» Since |011) is one of the basis vectors, we can use the identity

(wl011) = {o11j) = ;1
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Diffusion transform continued

» Final result of the diffusion transform:

= 21y) - w>—} (505) 1o+ 5 o1
=) = 5 )+ 5 ou)
= 50+ o1
> Substituting for |¢)) gives:
= L%é )| + 5 101
_4\1@;’“@)*['0”)
o
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A uaiad eamt
Geometric result of the diffusion transform

» Can also be written:
2) = 000} |001)4+ —— [010) 4~ [011) 4 . +—— |111)
T)=—¢+ — — — o=
42 42 42 42 42

» Geometric representation:

_ 5
Qo11) = 1. /5
1
B Wi Attt My = 55
Ya) = 1z | l l l | | |

1000) |001) 010) [011) [100) |101) [110) |111)
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The second Grover iteration

» | will spare you the details, as they are very similar. Result:

21} ] = 1] |3 00 - 55 01| = - MZ! g o1
x;é?)

» Longer format:

) = ———000)— )— )+ )— )

V/,|111
(7)

8\/, V/é\om x/,|o10 V/,|011
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Grover's Algorithm A worked example

Geometrically, the success of the algorithm is clear

[0 = ——
|011) 3v2
1
777777777777777777777777777 Oy = 22
_ -1
a|x> 78\/5 T T T T T T T

1000) [001) [010) [011) |100) [101) |110) [111)
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Grover's Algorithm A worked example

Final answer

» When the system is observed, the probability that the state
representative of the corrct solution, |011), will be measured is
2
181715| = 121/128 ~ 94.5%
» The probability of finding an incorrect state is
2
—\V7 ~
87@ = 7/128 ~ 5.5%
> Grover's algorithm is more than 17 times more likely to give the
correct answer than an incorrect one with an input size of N =8
» Error only decreases as the input size increases

> Although Grover's algorithm is probabilistic, the error truly becomes
negligible as N grows large.
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Simon's problem

» Simon’s problem is, given a function

£{0.)" = {01y

known to be invariant under some n-bit XOR mask a, determine a

» In other words, determine a given:

f(@)=fly) «— zay {0, a}

> One of the first problems for which a quantum algorithm was found
to provide exponential speedup over any classical algorithm

» Best classical algorithms, including probabilistic ones, require an
exponential (2"/2) queries to the black-box function in order to
determine a

» Simon's quantum algorithm solves this problem in polynomial time,
performing an optimal O(n) queries
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Period-finding, like Shor

|

Simon’s algorithm and Shor’s prime factorization algorithm solve a
similar problem: given a function f, find the period a of that function
While Simon'’s problem uses XOR to define the period, Shor's uses
binary addition as the constraint on f
These problems are more restricted cases of what is known as the
hidden subgroup problem, which corresponds to a number of
important problems in computer science
Any formulation of the Abelian hidden subgroup problem can be
solved by a quantum computer requiring a number of operations
logarithmic in the size of the group
The more general hidden subgroup problem is harder to solve:
» Analogous to the graph isomorphism problem, some shortest vector
problems in lattices,
» Currently no polynomial-time algorithms have been devised to solve
this problem
» Would be a breakthrough in quantum computing similar to Shor’s
discovery
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Simon's algorithm How it works
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Simon's algorithm How it works

More Hadamards, more oracle

» Overview of Simon's algorithm by circuit diagram
» Hadamard gates are important

0) —F—H®" — Hon — Af—

LH®"
Of(w)
Mran]

0) —=—{ e A
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Equal superposition, again, and then an oracle query

>

Given a function acting on n-bit strings, Simon'’s algorithm begins by
initializing two n-bit registers to 0:

0)2™ |0)="

Then applying the Hadamard transform to the first register to attain
an equal superposition of states:

1
HE0)[0) = —= Y |2)]0)
Voo

ze{0,1}"

Next, f(z) is queried on both the registers
The oracle is implemented as a unitary operation that performs the
transformation Oy, [2) ly) = |z) |f(x) © y):

1
2) I (2)
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Mid-algorithm measurement?!

>
>

Now the second register is measured
Two possible cases to consider in determining the impact of that
measurment on the first register

» XOR mask a = 0™

» a={0,1}"
If a = 0™, then f is injective: each value of x corresponds to a unique
value f(x)
This means that the first register remains in an equal superposition;
Regardless of the measured value of f(x), x could be any bit string in
{0,1}™ with equal probability
If a = {0,1}", measuring the second register determines a concrete
value of f(z), call it f(z), which limits the possible values of the first
register
Two possible values of z such that f(x) = f(2): zand z @ a:

|2) + )

1
7 \[|z@a
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Simon's algorithm How it works

Extracting information about a: Hadamard, of course

> Since there will be no more operations on the second register, further
calculations will focus only on the first register.

» The next step is to isolate the information about a that is now stored
in the first register

» This can be done by applying the Hadamard transform again

» The Hadamard transform may be defined using the bitwise dot
product x - y as:

H®”|x a:y|y
= ¥

ye{0,1}n
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Simon's algorithm How it works

» Using this notation, the result of applying a second Hadamard
operation is:

H®" [\2 |z) + \2 |z @ a}}
_ 1

1
H®nz—|—7H®nz@a
S |2) + s H )

LS |+
ﬁye{071}n

- > [T pEe )

el oD DR )

y€{0,1}"

S

— 3 [(_1)241 n (_1)(Z~y)®(a~y)] 1)

= Y CDTLA (=) y)
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Final measurement

» Now the value of the first register is measured
» In the degenerate case where a = 0" (f is injective), a string will be
produced from {0, 1}" with uniform distribution

» In the case where = & y # 0", notice that eithera-y =0ora-y = 1.
If -y =1, which gives:

1 _1\* 1)1 — 1 _1)\%
Wyg%}ﬂ( D7 1+ (=1 ly) m{?}( 17 (0] |y)
=0ly)

» The amplitude, and thus probability, that a value of y such that
a-y=1is equal to 0, and so such a y will never be measured.
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More on the final measurement

» Knowing that it will always be true that a - y = 0, the equation can
yet again be simplified:

1 e 0T 2 ey
W{Z}( 17 [1 4 (=1)°] |y m;}< 1) [y)
1
= = (=¥ |y)
27 y€{§07:1}"

> So when a # 0™, the result will always be a string
ye{0,1}":a-y=0
» The amplitude associated with each value y is &v/21—", giving the

probability:
I N ! o
N NG BT )

of observing any of the strings y such that a-y =0
» A uniform distribution over the 277! strings that satisfy a -y = 0.
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Post-processing: solving a system of linear equations

» If Simon’s algorithm is executed n — 1 times, n — 1 strings y1, 2, - . .,
Yn—1 € {0,1}"™ can be observed, which form a system of n — 1 linear
equations in n unknowns of the form:

Y1 -a=yia1 + yi2a2 + ...+ yipap, =0
Y2 - a = yi1a1 + Ya2a2 + ... + yopa, =0

Yn—1°0=Ymn-1)101 + Yn-1)202 + ... + Yn-1)nan =0

» To find a from here is just a matter of solving for the n unknowns,
each a bit in a, in order to determine a as a whole

» Of course, this requires a system of n — 1 linearly independent
equations.
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How to get a solvable system?

» The probability of observing the first string yq is 2"

> After another iteration of Simon's algorithm, the probability of
observing another distinct bit string would be 1 — 21—7

» The probability of observing n — 1 distinct values of y in a row, and
so a lower bound on the probability of obtaining n — 1 linearly
independent equations, is:

o0

1 1
1 — — | ~ 2887881 > —
I 5] .

n=1

» A linearly independent system of n — 1 equations, and from there the
value of a, can be obtained by repeating Simon’s algorithm no more
than 4n times

» Simon’s algorithm requires only O(n) queries to f in order to
determine a, while classical algorithms require exponential time
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A 3-qubit example

» Now a worked example with n = 3, a = 110, and f(z) defined by the
following table:

r [f(x)
000 101
001 010
010 000
011 110
100 000
101 110
110 101
111 010
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Simon's algorithm An example
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