Introduction to Quantum Computing Part I

Emma Strubell

http://cs.umaine.edu/~ema/quantum_tutorial.pdf
April 12, 2011

Overview

What is quantum computing?

- Background
- Caveats

Mathematical representation
■ Fundamental differences

- Hilbert spaces and Dirac notation
- The qubit
- Quantum Registers

■ Quantum logic gates

- Computational complexity

Outline

What is quantum computing?

■ Background

- Caveats

Mathematical representation

■ Fundamental differences

- Hilbert spaces and Dirac notation
- The qubit

■ Quantum Registers

- Quantum logic gates
- Computational complexity

Origins of fame

- Quantum computer first proposed by Richard Feynman in 1981
- Problem: efficiently simulating quantum systems inherently impossible on a classical computer
- Solution: new machine "built of quantum mechanical elements which obey quantum mechanical laws"

- Daniel Simon demonstrates exponential speedup in 1994
- nobody cares; algorithm too abstract
- Peter Shor demonstrates exciting exponential speedup in 1997
- based on Simon's algorithm
- efficiently factors integers into primes
- this breaks RSA

Outline

What is quantum computing?

- Background

■ Caveats

Mathematical representation

■ Fundamental differences

- Hilbert spaces and Dirac notation
- The qubit

■ Quantum Registers

- Quantum logic gates
- Computational complexity

Unfortunately, scalable QCs still don't exist

- As of 2009, quantum computers able to factor 15 into 5 and 3
- The problem is decoherence
- Man-made quantum system wants to interact with surrounding systems
- Sources of interference include electric and magnetic fields required to power machine itself

Overview

What is quantum computing?

- Background
- Caveats

Mathematical representation
■ Fundamental differences
■ Hilbert spaces and Dirac notation

- The qubit
- Quantum Registers

■ Quantum logic gates

- Computational complexity

Outline

What is quantum computing?

- Background
- Caveats

Mathematical representation

■ Fundamental differences

- Hilbert spaces and Dirac notation
- The qubit

■ Quantum Registers

- Quantum logic gates
- Computational complexity

Three main differences from classical computers

1 Superposition

- quantum system exists in all possible states at all times

2 Probabilities

- fortunately, a probability can be associated with each of those states

3 Entanglement

- probabilities of different states can depend on each other
- quantum teleportation uses this property for cryptographic purposes

Outline

What is quantum computing?

- Background
- Caveats

Mathematical representation

- Fundamental differences

■ Hilbert spaces and Dirac notation

- The qubit

■ Quantum Registers
■ Quantum logic gates

- Computational complexity

Dirac notation

- Just another way of describing vectors:

$$
\mathbf{v}=\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=|\mathbf{v}\rangle
$$

- and their duals:

$$
\langle\mathbf{v}|=\overline{\mathbf{v}^{\mathrm{T}}}=\left[\begin{array}{llll}
\overline{v_{0}} & \overline{v_{1}} & \ldots & \overline{v_{n}}
\end{array}\right]
$$

- Convenient for describing vectors in the Hilbert space \mathbb{C}^{n}, the vector space of quantum mechanics

\mathbb{C}^{n} and the inner product

- A Hilbert space, for our (finite) purposes, is a vector space with an inner product, and a norm defined by that inner product. We use the following in \mathbb{C}^{n} :
- The inner product assigns a scalar value to each pair of vectors:

$$
\langle\mathbf{u} \mid \mathbf{v}\rangle=\overline{\mathbf{u}^{\mathrm{T}}} \mathbf{v}=\left[\begin{array}{llll}
\overline{u_{0}} & \overline{u_{1}} & \ldots & \overline{u_{n}}
\end{array}\right]\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\overline{u_{0}} \cdot v_{0}+\overline{u_{1}} \cdot v_{1}+\ldots+\overline{u_{n}} \cdot v_{n}
$$

- The norm is the square root of the inner product of a vector with itself (i.e. Euclidean norm, ℓ^{2}-norm, 2-norm over complex numbers):

$$
\||\mathbf{v}\rangle \|=\sqrt{\langle\mathbf{v} \mid \mathbf{v}\rangle}
$$

- Geometrically, this norm gives the distance from the origin to the point $|v\rangle$ that follows from the Pythagorean theorem.

Properties of the inner product

The inner product satisfies the three following properties:
Definition
$\mathbf{1}\langle\mathbf{v} \mid \mathbf{v}\rangle \geq 0$, with $\langle\mathbf{v} \mid \mathbf{v}\rangle=0$ if and only if $|\mathbf{v}\rangle=\mathbf{0}$.
$2\langle\mathbf{u} \mid \mathbf{v}\rangle=\overline{\langle\mathbf{v} \mid \mathbf{u}\rangle}$ for all $|\mathbf{u}\rangle,|\mathbf{v}\rangle$ in the vector space.
$3\left\langle\mathbf{u} \mid \alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{w}\right\rangle=\alpha_{0}\langle\mathbf{u} \mid \mathbf{v}\rangle+\alpha_{1}\langle\mathbf{u} \mid \mathbf{w}\rangle$. More generally, the inner product of $|\mathbf{u}\rangle$ and $\sum_{i} \alpha_{i}\left|\mathbf{v}_{i}\right\rangle$ is equal to $\sum_{i} \alpha_{i}\left\langle\mathbf{u} \mid \mathbf{v}_{i}\right\rangle$ for all scalars α_{i} and vectors $|\mathbf{u}\rangle,|\mathbf{v}\rangle$ in the vector space (this is known as linearity in the second argument).

The outer product

- The outer product is the tensor or Kronecker product of a vector with the conjugate transpose of another. The result is not a scalar, but a matrix:

$$
|\mathbf{v}\rangle\langle\mathbf{u}|=\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\left[\begin{array}{llll}
\overline{u_{0}} & \overline{u_{1}} & \ldots & \overline{u_{m}}
\end{array}\right]=\left[\begin{array}{cccc}
v_{0} \overline{u_{0}} & v_{0} \overline{u_{1}} & \ldots & v_{0} \overline{u_{m}} \\
v_{1} \overline{u_{0}} & v_{1} \overline{u_{1}} & \ldots & v_{1} \overline{u_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} \overline{u_{0}} & v_{n} \overline{u_{1}} & \ldots & v_{n} \overline{u_{m}}
\end{array}\right]
$$

- Often used to describe a linear transformation between vector spaces.
- A linear transformation from a Hilbert space U to another Hilbert space V on a vector $|\mathbf{w}\rangle$ in U may be succintly described in Dirac notation:

$$
(|\mathbf{v}\rangle\langle\mathbf{u}|)|\mathbf{w}\rangle=|\mathbf{v}\rangle\langle\mathbf{u} \mid \mathbf{w}\rangle=\langle\mathbf{u} \mid \mathbf{w}\rangle|\mathbf{v}\rangle
$$

Since $\langle\mathbf{u} \mid \mathbf{w}\rangle$ is a commutative, scalar value.

The tensor product

- Usually simplified from $|\mathbf{u}\rangle \otimes|\mathbf{v}\rangle$ to $|\mathbf{u}\rangle|\mathbf{v}\rangle$ or $|\mathbf{u v}\rangle$
- A vector tensored with itself n times is denoted $|\mathbf{v}\rangle^{\otimes n}$ or $|\mathbf{v}\rangle^{n}$
- Two column vectors $|\mathbf{u}\rangle$ and $|\mathbf{v}\rangle$ of lengths m and n yield a column vector of length $m \cdot n$ when tensored:

$$
|\mathbf{u}\rangle|\mathbf{v}\rangle=|\mathbf{u v}\rangle=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{m}
\end{array}\right] \otimes\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{0} \cdot v_{0} \\
u_{0} \cdot v_{1} \\
\vdots \\
u_{0} \cdot v_{n} \\
u_{1} \cdot v_{0} \\
\vdots \\
u_{m-1} \cdot v_{n} \\
u_{m} \cdot v_{0} \\
\vdots \\
u_{m} \cdot v_{n}
\end{array}\right]
$$

Outline

What is quantum computing?

■ Background

- Caveats

Mathematical representation

- Fundamental differences
- Hilbert spaces and Dirac notation
- The qubit
- Quantum Registers

■ Quantum logic gates

- Computational complexity

\mathbb{C}^{2} describes a single quantum bit (qubit)

- A classical bit may be represented as a base-2 number that takes either the value 1 or the value 0
- Qubits are also base-2 numbers, but in a superposition of the measurable values 1 and 0
- The state of a qubit at any given time represented as a two-dimensional state space in \mathbb{C}^{2} with orthonormal basis vectors $|1\rangle$ and $|0\rangle$
- The superposition $|\psi\rangle$ of a qubit is represented as a linear combination of those basis vectors:

$$
|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle
$$

Where a_{0} is the complex scalar amplitude of measuring $|0\rangle$, and a_{1} the amplitude of measuring the value $|1\rangle$.

Amplitudes, not probabilities

- Amplitudes may be thought of as "quantum probabilities" in that they represent the chance that a given quantum state will be observed when the superposition is collapsed
- Most fundamental difference between probabilities of states in classical probabilistic algorithms and amplitudes: amplitudes are complex
- Complex numbers required to fully describe superposition of states, interference or entanglement in quantum systems. ${ }^{1}$
- As the probabilities of a classical system must sum to 1 , so too the squares of the absolute values of the amplitudes of states in a quantum system must add up to 1

[^0]
Amplitudes and the normalization condition

- Just as the hardware underlying the bits of a classical computer may vary in voltage, quantum systems are not usually so perfectly behaved
- An assumption is made about quantum state vectors called the normalization conditon: $|\psi\rangle$ is a unit vector.
- $\||\psi\rangle \|=\langle\psi \mid \psi\rangle=1$
- If $|0\rangle$ and $|1\rangle$ are orthonormal, then by orthogonality $\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0$, and by normality $\langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle=1$
- It follows that $\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1$:

$$
\begin{aligned}
1 & =\langle\psi \mid \psi\rangle \\
& =\left(\overline{a_{0}}\langle 0|+\overline{a_{1}}\langle 1|\right) \cdot\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \\
& =\left|a_{0}\right|^{2}\langle 0 \mid 0\rangle+\left|a_{1}\right|^{2}\langle 1 \mid 1\rangle+\overline{a_{1}} a_{0}\langle 1 \mid 0\rangle+\overline{a_{0}} a_{1}\langle 0 \mid 1\rangle \\
& =\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}
\end{aligned}
$$

Why we use Dirac notation

The following is equivalent to the last slide:

$$
\begin{aligned}
& 1=\langle\psi \mid \psi\rangle \\
& =\left(\overline{a_{0}}\langle 0|+\overline{a_{1}}\langle 1|\right) \cdot\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \\
& =\left(\begin{array}{ll}
\left.\overline{a_{0}}\left[\begin{array}{ll}
\psi_{00} & \overline{\psi_{01}}
\end{array}\right]+\overline{a_{1}}\left[\begin{array}{ll}
\psi_{10} & \overline{\psi_{11}}
\end{array}\right]\right) \cdot\left(a_{0}\left[\begin{array}{l}
\psi_{00} \\
\psi_{01}
\end{array}\right]+a_{1}\left[\begin{array}{l}
\psi_{10} \\
\psi_{11}
\end{array}\right]\right), ~\left(a^{2}\right.
\end{array}\right) \\
& =\left[\begin{array}{ll}
\overline{a_{0} \psi_{00}}+\overline{a_{1} \psi_{10}} & \overline{a_{0} \psi_{01}}+\overline{a_{1} \psi_{11}}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \psi_{00}+a_{1} \psi_{10} \\
a_{0} \psi_{01}+a_{1} \psi_{11}
\end{array}\right] \\
& =\overline{a_{0} \psi_{00}} a_{0} \psi_{00}+\overline{a_{1} \psi_{10}} a_{0} \psi_{00}+\overline{a_{0} \psi_{00}} a_{1} \psi_{10}+\overline{a_{1} \psi_{10}} a_{1} \psi_{10} \\
& +\overline{a_{0} \psi_{01}} a_{0} \psi_{01}+\overline{a_{1} \psi_{11}} a_{0} \psi_{01}+\overline{a_{0} \psi_{01}} a_{1} \psi_{11}+\overline{a_{1} \psi_{11}} a_{1} \psi_{11} \\
& =\left|a_{0}\right|^{2}\left(\left|\psi_{00}\right|^{2}+\left|\psi_{01}\right|^{2}\right)+\left|a_{1}\right|^{2}\left(\left|\psi_{10}\right|^{2}+\left|\psi_{11}\right|^{2}\right) \\
& +\overline{a_{1}} a_{0}\left(\overline{\psi_{10}} \psi_{00}+\overline{\psi_{11}} \psi_{01}\right)+\overline{a_{0}} a_{1}\left(\overline{\psi_{00}} \psi_{10}+\overline{\psi_{01}} \psi_{11}\right) \\
& =\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}
\end{aligned}
$$

The computational basis

- $|0\rangle$ and $|1\rangle$ may be transformed into any two vectors that form an orthonormal basis in \mathbb{C}^{2}
- The most common basis used in quantum computing is called the computational basis:

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- The computational basis tends to be the most straightforward basis for computing and understanding quantum algorithms
- Assume I'm using the computational basis unless otherwise stated

Another basis

- Any other orthonormal basis could be used:
- Providing a slightly different but equivalent way of expressing of a qubit:

$$
\begin{aligned}
|\psi\rangle & =a_{0}|0\rangle+a_{1}|1\rangle \\
& =a_{0} \frac{|+\rangle+|-\rangle}{\sqrt{2}}+a_{1} \frac{|+\rangle-|-\rangle}{\sqrt{2}} \\
& =\frac{a_{0}+a_{1}}{\sqrt{2}}|+\rangle+\frac{a_{0}+a_{1}}{\sqrt{2}}|-\rangle
\end{aligned}
$$

- Here, instead of measuring the states $|0\rangle$ and $|1\rangle$ each with respective probabilities $\left|a_{0}\right|^{2}$ and $\left|a_{1}\right|^{2}$, the states $|+\rangle$ and $|-\rangle$ would be measured with probabilities $\left|a_{0}+a_{1}\right|^{2} / 2$ and $\left|a_{0}-a_{1}\right|^{2} / 2$.

Outline

What is quantum computing?

- Background
- Caveats

Mathematical representation

- Fundamental differences
- Hilbert spaces and Dirac notation
- The qubit

■ Quantum Registers

- Quantum logic gates
- Computational complexity

Registers more useful than single qubits

- Each qubit in a quantum register is in a superposition of $|1\rangle$ and $|0\rangle$
- Consequently, a register of n qubits is in a superposition of all 2^{n} possible bit strings that could be represented using n bits
- The state space of a size- n quantum register is a linear combination of n basis vectors, each of length 2^{n} :

$$
\left|\psi_{n}\right\rangle=\sum_{i=0}^{2^{n}-1} a_{i}|i\rangle
$$

- A three-qubit register would thus have the following expansion:

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =a_{0}|000\rangle+a_{1}|001\rangle+a_{2}|010\rangle+a_{3}|011\rangle \\
& +a_{4}|100\rangle+a_{5}|101\rangle+a_{6}|110\rangle+a_{7}|111\rangle
\end{aligned}
$$

Registers continued

- Each possible bit configuration in the quantum superposition is denoted by the tensor product of its counterpart qubits
- Consider $|101\rangle$, the bit string that represents the integer value 5 :

$$
\begin{aligned}
|101\rangle & =|1\rangle \otimes|0\rangle \otimes|1\rangle \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

- As with single qubits, the squared absolute value of the amplitude associated with a given bit string is the probability of observing that bit string, and the the sqares of the absolute values of the amplitudes of all 2^{n} possible bit configuations of an n-bit register sum to unity:

$$
\sum_{i=0}^{2^{n}-1}\left|a_{i}\right|^{2}=1
$$

Outline

What is quantum computing?

■ Background

- Caveats

Mathematical representation

- Fundamental differences

■ Hilbert spaces and Dirac notation

- The qubit
- Quantum Registers

■ Quantum logic gates

- Computational complexity

Evolving the system: quantum circuits and quantum gates

- One way of thinking about algorithm design and computation is via quantum Turing machines
- First described by David Deutsch in 1985, but both a quantum Turing machine's tape and its read-write head exist in superpositions of an exponential number states!

- Instead of using the Turing machine as a computational model, operations on a quantum computer most often described using quantum circuits (also introduced by Deutsch a few years later)
- Although circuits are computationally equivalent to Turing machines, they are usually much simpler to depict, manipulate and understand

Quantum gates represent unitary transformations

- Quantum gates are represented as transformation matrices, linear operators applied to a quantum register by tensoring the operator with the register
- All quantum linear operators must be unitary:
- If a complex matrix U is unitary, then $U^{-1}=U^{\dagger}$, where U^{\dagger} is the conjugate transpose: $U^{\dagger}=\bar{U}^{\mathrm{T}}$
- It follows that $U U^{\dagger}=U^{\dagger} U=I$
- Unitary operators preserve inner product:

$$
\langle\mathbf{u}| U^{\dagger} U|\mathbf{v}\rangle=\langle\mathbf{u}| I|\mathbf{v}\rangle=\langle\mathbf{u} \mid \mathbf{v}\rangle
$$

- The composition of two unitary operators is also unitary:

$$
(U V)^{\dagger}=V^{\dagger} U^{\dagger}=V^{-1} U^{-1}=(U V)^{-1}
$$

The Bloch sphere

- Unitary transformations performed on a qubit may be visualized as rotations and reflections about the x, y, and z axes of the Bloch sphere
- All linear combinations $a_{0}|0\rangle+a_{1}|1\rangle$ in \mathbb{C}^{2} correspond to all the points (θ, ψ) on the surface of the unit sphere, where $a_{0}=\cos (\theta / 2)$ and $a_{1}=e^{i \phi} \sin (\theta / 2)=(\cos \phi+i \sin \phi) \sin \frac{\theta}{2}$

The Hadamard operator

$$
-H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{|0\rangle+|1\rangle}{\sqrt{2}}\langle 0|+\frac{|0\rangle-|1\rangle}{\sqrt{2}}\langle 1|
$$

- Often referred to as a "fair coin flip," the Hadamard operator applied to a qubit with the value $|0\rangle$ or $|1\rangle$ will induce an equal superposition of the states $|0\rangle$ and $|1\rangle$:

$$
\begin{aligned}
& H|0\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}\langle 0 \mid 0\rangle+\frac{|0\rangle-|1\rangle}{\sqrt{2}}\langle 1 \mid 0\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
& H|1\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}\langle 0 \mid 1\rangle+\frac{|0\rangle-|1\rangle}{\sqrt{2}}\langle 1 \mid 1\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

- Many quantum algorithms begin by applying the Hadamard operator to each qubit in a register initialized to $|0\rangle^{n}$, which puts the entire register into an equal superposition of states

Bloch sphere representation of the Hadamard operator

- Geometrically, the Hadamard operator performs a rotation of $\pi / 2$ about the y axis followed by a rotation about the x axis by π radians on the Bloch sphere:

The Pauli gates

- The three Pauli gates, named after yet another Nobel laureate Wolfgang Pauli, are also important single-qubit gates for quantum computation
- The Pauli-X gate swaps the amplitudes of $|0\rangle$ and $|1\rangle$:

$$
-X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=|1\rangle\langle 0|+|0\rangle\langle 1|
$$

- The Pauli-Y gate swaps the amplitudes of $|0\rangle$ and $|1\rangle$, multiplies each amplitude by i, and negates the amplitude of $|1\rangle$:

$$
Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=i|1\rangle\langle 0|-i|0\rangle\langle 1|
$$

- And the Pauli-Z gate negates the amplitude of $|1\rangle$, leaving the amplitude of $|0\rangle$ the same:

$$
Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=|1\rangle\langle 0|-|0\rangle\langle 1|
$$

Bloch sphere representation of Pauli- X and $-Y$ gates

- The Pauli-X, -Y , and -Z gates correspond to rotations by π radians about the x, y, and z axes respectively on the Bloch sphere

Generalized phase shift

- The Pauli-Z gate, altering only the phase of the system, is a special case of the more general phase-shift gate, which does not modify the amplitude of $|0\rangle$ but changes the phase of $|1\rangle$ by a factor of $e^{i \theta}$ for any value of θ :

$$
-R_{\theta}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]=|1\rangle\langle 0|+e^{i \theta}|0\rangle\langle 1|
$$

- The Pauli-Z gate is equivalent to the phase-shift gate with $\theta=\pi$.
- Wolfgang Pauli with friends Werner Heisenberg and Enrico Fermi:

More phase shift gates

- Another special case of the phase-shift gate where $\theta=\pi / 2$ is known as simply the phase gate, denoted S, which changes the phase of $|1\rangle$ by a factor of i :

$$
-S
$$

- And the phase-shift gate where $\theta=\pi / 4$ is referred to as the $\pi / 8$ gate, or T :

$$
T=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]=|1\rangle\langle 0|+e^{i \pi / 4}|0\rangle\langle 1|
$$

With the name $\pi / 8$ coming from the fact that this transformation can also be written as a matrix with $\pi / 8$ along the diagonal:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]=e^{i \pi / 8}\left[\begin{array}{cc}
e^{-i \pi / 8} & 0 \\
0 & e^{i \pi / 8}
\end{array}\right]
$$

Controlled operations: CNOT

- Quantum computing also makes use of controlled operations, multi-qubit operations that change the state of a qubit based on the values of other qubits
- The quantum controlled-NOT or CNOT gate swaps the amplitudes of the $|0\rangle$ and $|1\rangle$ basis states of a qubit, equivalent to application of the Pauli-X gate, only if the controlling qubit has the value $|1\rangle$:

Generalized controlled operations

- Controlled operations are not restricted to conditional application of the Pauli-X gate; Any unitary operation may be performed:

- Matrix representation:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & x_{00} & x_{10} \\
0 & 0 & x_{01} & x_{11}
\end{array}\right]
$$

- Dirac equivalent:

$$
\begin{aligned}
|00\rangle\langle 00|+|01\rangle\langle 01| & +x_{00}|10\rangle\langle 10|+x_{01}|10\rangle\langle 11| \\
& +x_{10}|11\rangle\langle 10|+x_{11}|11\rangle\langle 11|
\end{aligned}
$$

Controlled operations: Toffoli

- In fact, controlled operations are possible with any number n control qubits and any unitary operator on k qubits
- The Toffoli gate is probably the best known of these gates
- Also known as the controlled-controlled-NOT gate, the Toffoli gate acts on three qubits: two control qubits and one target
- If both control qubits are set, then the amplitudes of the target qubit are flipped:

Toffoli continued

- The Toffoli gate was originally devised as a universal, reversible classical logic gate by Tommaso Toffoli
- It is especially interesting because depending on the input, the gate can perform logical AND, XOR, NOT and FANOUT operations...
- This makes it universal for classical computing!
- Quantum computing is reversible:
- All evolution in a quantum system can be described by unitary matrices, all unitary transformations are invertible, and thus all quantum computation is reversible
- The Toffoli gate implies that quantum computation is at least as powerful as classical computation

Outline

What is quantum computing?

- Background
- Caveats

Mathematical representation

- Fundamental differences
- Hilbert spaces and Dirac notation
- The qubit
- Quantum Registers
- Quantum logic gates

■ Computational complexity

Classical computational complexity: a review

- To understand the possible power of quantum computing, it helps to look at the computational power of quantum computers in relation to their classical counterparts
- Remember that problems in P are decision problems that can be solved in polynomial time by a deterministic Turing machine
- The equivalent class for space efficiency is referred to as PSPACE
- NP problems are those that require a nondeterministic Turing machine in order to be solved efficiently
- The class of NP-complete problems, abbreviated NPC, consists of the hardest problems in NP
- Every problem in NP can be reduced to a problem in NPC
- If one NPC problem was found to be in P , then all of the problems in NP would also be in P, proving $P=N P$
- Most theoretical computer scientests believe that $\mathrm{P} \neq \mathrm{NP}$, but nobody has been successful in proving the conjecture either way.

Classical probabilistic complexity

- There is another important complexity class called BPP: Bounded-error Probabilistic Polynomial time
- BPP describes decision problems that can be solved in polynomial time by a probabilistic Turing machine
- Probabilistic Turing machines are those with direct access to some source of truly random input
- In BPP, the error of the solution is bounded in that the probability that the answer is correct must be at least two-thirds
- Although there are currently problems solvable in BPP that are not in P , the number of such problems has been decreasing since the introduction of BPP in the 1970's
- While it is not yet been proven whether $\mathrm{P} \subset \mathrm{BPP}$, it is conjectured that $\mathrm{P}=\mathrm{BPP}$

Quantum computational complexity

- Quantum computation introduces a number of new complexity classes to the polynomial hierarchy
- Probably the most studied complexity class is Bounded-error Quantum Polynomial time, or BQP
- BQP is the quantum extension of BPP: the class of decision problems solvable in polynomial time by an innately probabilistic quantum Turing machine, with the same error constraint as defined for BPP
- Unlike BPP, it is suspected that $\mathrm{P} \subset B Q P$, which would mean that quantum computers are capable of solving some problems in polynomial time that cannot be solved efficiently by a classical Turing machine!

A conjectured polynomial hierarchy

Image Credits

- Quantum Computer:
http://www.wired.com/wiredscience/2010/01/
quantum-computer-hydrogen-simulation/
- Richard Feynman: http://www-scf.usc.edu/~kallos/feynman.htm
- Peter Shor: http://www-math.mit.edu/~shor/
- Cooling system for D-wave's quantum computer: http://mail2web.com/blog/ wp-content/uploads/2007/03/d-wave-quantum-computer-cryopump.png
- Shrodinger's cat: http://confidentlysingle.com/2010/10/schrodingers-cat/
- David Deutsch:
http://datapeak.net/computerscientists.htm
- Pauli \& friends:
http://scienceblogs.com/startswithabang/2010/10/the_story_of_the_ neutrino.php
- Tommaso Toffoli:
http://pm1.bu.edu/~tt/
- John T. Gill III:
http://riddles.stanford.edu/gill/

[^0]: ${ }^{1}$ See http://www.scottaaronson.com/democritus/lec9.html for a great discussion by of why complex numbers and the 2-norm are used to describe quantum mechanical systems

