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What is quantum computing? Background

Origins of fame

I Quantum computer first proposed by
Richard Feynman in 1981

I Problem: efficiently simulating
quantum systems inherently
impossible on a classical computer

I Solution: new machine “built of
quantum mechanical elements which
obey quantum mechanical laws”

I Daniel Simon demonstrates
exponential speedup in 1994

I nobody cares; algorithm too abstract

I Peter Shor demonstrates exciting
exponential speedup in 1997

I based on Simon’s algorithm
I efficiently factors integers into primes
I this breaks RSA

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 4 / 46



What is quantum computing? Caveats

Outline

What is quantum computing?
Background
Caveats

Mathematical representation
Fundamental differences
Hilbert spaces and Dirac notation
The qubit
Quantum Registers
Quantum logic gates
Computational complexity

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 5 / 46



What is quantum computing? Caveats

Unfortunately, scalable QCs still don’t exist

I As of 2009, quantum computers able to factor 15 into 5 and 3
I The problem is decoherence

I Man-made quantum system wants to interact with surrounding systems
I Sources of interference include electric and magnetic fields required to

power machine itself
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Mathematical representation Fundamental differences

Three main differences from classical computers

1 Superposition
I quantum system exists in all possible states at all times

2 Probabilities
I fortunately, a probability can be associated with each of those states

3 Entanglement
I probabilities of different states can depend on each other
I quantum teleportation uses this property for cryptographic purposes
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Mathematical representation Hilbert spaces and Dirac notation

Dirac notation

I Just another way of describing vectors:

v =


v0
v1
...
vn

 = |v〉

I and their duals:

〈v| = vT =
[
v0 v1 . . . vn

]
I Convenient for describing vectors in the Hilbert space Cn, the vector

space of quantum mechanics
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Mathematical representation Hilbert spaces and Dirac notation

Cn and the inner product

I A Hilbert space, for our (finite) purposes, is a vector space with an
inner product, and a norm defined by that inner product. We use the
following in Cn:

I The inner product assigns a scalar value to each pair of vectors:

〈u|v〉 = uTv =
[
u0 u1 . . . un

]

v0
v1
...
vn

 = u0 ·v0+u1 ·v1+. . .+un ·vn

I The norm is the square root of the inner product of a vector with itself
(i.e. Euclidean norm, `2-norm, 2-norm over complex numbers):

‖|v〉‖ =
√
〈v|v〉

I Geometrically, this norm gives the distance from the origin to the point
|v〉 that follows from the Pythagorean theorem.
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Mathematical representation Hilbert spaces and Dirac notation

Properties of the inner product

The inner product satisfies the three following properties:

Definition

1 〈v|v〉 ≥ 0, with 〈v|v〉 = 0 if and only if |v〉 = 0.

2 〈u|v〉 = 〈v|u〉 for all |u〉, |v〉 in the vector space.

3 〈u|α0v + α1w〉 = α0 〈u|v〉+ α1 〈u|w〉.
More generally, the inner product of |u〉 and

∑
i
αi |vi〉 is equal to∑

i
αi 〈u|vi〉 for all scalars αi and vectors |u〉, |v〉 in the vector space

(this is known as linearity in the second argument).
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Mathematical representation Hilbert spaces and Dirac notation

The outer product

I The outer product is the tensor or Kronecker product of a vector with
the conjugate transpose of another. The result is not a scalar, but a
matrix:

|v〉 〈u| =


v0
v1
...
vn

 [u0 u1 . . . um
]

=


v0u0 v0u1 . . . v0um
v1u0 v1u1 . . . v1um

...
...

. . .
...

vnu0 vnu1 . . . vnum


I Often used to describe a linear transformation between vector spaces.

I A linear transformation from a Hilbert space U to another Hilbert
space V on a vector |w〉 in U may be succintly described in Dirac
notation:

(|v〉 〈u|) |w〉 = |v〉 〈u|w〉 = 〈u|w〉 |v〉

Since 〈u|w〉 is a commutative, scalar value.
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Mathematical representation Hilbert spaces and Dirac notation

The tensor product

I Usually simplified from |u〉 ⊗ |v〉 to |u〉 |v〉 or |uv〉
I A vector tensored with itself n times is denoted |v〉⊗n or |v〉n
I Two column vectors |u〉 and |v〉 of lengths m and n yield a column

vector of length m · n when tensored:

|u〉 |v〉 = |uv〉 =


u0

u1
...
um

⊗

v0
v1
...
vn

 =



u0 · v0
u0 · v1

...
u0 · vn
u1 · v0

...
um−1 · vn
um · v0

...
um · vn


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Mathematical representation The qubit

C2 describes a single quantum bit (qubit)

I A classical bit may be represented as a base-2 number that takes
either the value 1 or the value 0

I Qubits are also base-2 numbers, but in a superposition of the
measurable values 1 and 0

I The state of a qubit at any given time represented as a
two-dimensional state space in C2 with orthonormal basis vectors |1〉
and |0〉

I The superposition |ψ〉 of a qubit is represented as a linear
combination of those basis vectors:

|ψ〉 = a0 |0〉+ a1 |1〉

Where a0 is the complex scalar amplitude of measuring |0〉, and a1

the amplitude of measuring the value |1〉.
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Mathematical representation The qubit

Amplitudes, not probabilities

I Amplitudes may be thought of as “quantum probabilities” in that
they represent the chance that a given quantum state will be
observed when the superposition is collapsed

I Most fundamental difference between probabilities of states in
classical probabilistic algorithms and amplitudes: amplitudes are
complex

I Complex numbers required to fully describe superposition of states,
interference or entanglement in quantum systems.1

I As the probabilities of a classical system must sum to 1, so too the
squares of the absolute values of the amplitudes of states in a quantum
system must add up to 1

1See http://www.scottaaronson.com/democritus/lec9.html for a great
discussion by of why complex numbers and the 2-norm are used to describe quantum
mechanical systems
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Mathematical representation The qubit

Amplitudes and the normalization condition

I Just as the hardware underlying the bits of a classical computer may
vary in voltage, quantum systems are not usually so perfectly behaved

I An assumption is made about quantum state vectors called the
normalization conditon: |ψ〉 is a unit vector.

I ‖|ψ〉‖ = 〈ψ|ψ〉 = 1
I If |0〉 and |1〉 are orthonormal, then by orthogonality 〈0|1〉 = 〈1|0〉 = 0,

and by normality 〈0|0〉 = 〈1|1〉 = 1
I It follows that |a0|2 + |a1|2 = 1:

1 = 〈ψ|ψ〉
= (a0 〈0|+ a1 〈1|) · (a0 |0〉+ a1 |1〉)
= |a0|2 〈0|0〉+ |a1|2 〈1|1〉+ a1a0 〈1|0〉+ a0a1 〈0|1〉
= |a0|2 + |a1|2
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Mathematical representation The qubit

Why we use Dirac notation

The following is equivalent to the last slide:

1 = 〈ψ|ψ〉
= (a0 〈0|+ a1 〈1|) · (a0 |0〉+ a1 |1〉)

=
(
a0

[
ψ00 ψ01

]
+ a1

[
ψ10 ψ11

])
·
(
a0

[
ψ00

ψ01

]
+ a1

[
ψ10

ψ11

])
=
[
a0ψ00 + a1ψ10 a0ψ01 + a1ψ11

]
·
[
a0ψ00 + a1ψ10

a0ψ01 + a1ψ11

]
= a0ψ00a0ψ00 + a1ψ10a0ψ00 + a0ψ00a1ψ10 + a1ψ10a1ψ10

+ a0ψ01a0ψ01 + a1ψ11a0ψ01 + a0ψ01a1ψ11 + a1ψ11a1ψ11

= |a0|2
(
|ψ00|2 + |ψ01|2

)
+ |a1|2

(
|ψ10|2 + |ψ11|2

)
+ a1a0

(
ψ10ψ00 + ψ11ψ01

)
+ a0a1

(
ψ00ψ10 + ψ01ψ11

)
= |a0|2 + |a1|2
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Mathematical representation The qubit

The computational basis

I |0〉 and |1〉 may be transformed into any two vectors that form an
orthonormal basis in C2

I The most common basis used in quantum computing is called the
computational basis:

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
I The computational basis tends to be the most straightforward basis

for computing and understanding quantum algorithms

I Assume I’m using the computational basis unless otherwise stated
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Mathematical representation The qubit

Another basis

I Any other orthonormal basis could be used:

|+〉 =
|0〉+ |1〉√

2
=

1√
2

[
1
1

]
, |−〉 =

|0〉 − |1〉√
2

=
1√
2

[
1
−1

]
I Providing a slightly different but equivalent way of expressing of a

qubit:

|ψ〉 = a0 |0〉+ a1 |1〉

= a0
|+〉+ |−〉√

2
+ a1

|+〉 − |−〉√
2

=
a0 + a1√

2
|+〉+ a0 + a1√

2
|−〉

I Here, instead of measuring the states |0〉 and |1〉 each with respective
probabilities |a0|2 and |a1|2, the states |+〉 and |−〉 would be
measured with probabilities |a0 + a1|2/2 and |a0 − a1|2/2.
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Mathematical representation Quantum Registers
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Mathematical representation Quantum Registers

Registers more useful than single qubits

I Each qubit in a quantum register is in a superposition of |1〉 and |0〉
I Consequently, a register of n qubits is in a superposition of all 2n

possible bit strings that could be represented using n bits

I The state space of a size-n quantum register is a linear combination
of n basis vectors, each of length 2n:

|ψn〉 =
2n−1∑
i=0

ai |i〉

I A three-qubit register would thus have the following expansion:

|ψ2〉 = a0 |000〉+ a1 |001〉+ a2 |010〉+ a3 |011〉
+ a4 |100〉+ a5 |101〉+ a6 |110〉+ a7 |111〉
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Mathematical representation Quantum Registers

Registers continued

I Each possible bit configuration in the quantum superposition is
denoted by the tensor product of its counterpart qubits

I Consider |101〉, the bit string that represents the integer value 5:

|101〉 = |1〉 ⊗ |0〉 ⊗ |1〉

=
[
0
1

]
⊗
[
1
0

]
⊗
[
0
1

]
=
[
0 0 0 0 0 1 0 0

]T
I As with single qubits, the squared absolute value of the amplitude

associated with a given bit string is the probability of observing that
bit string, and the the sqares of the absolute values of the amplitudes
of all 2n possible bit configuations of an n-bit register sum to unity:

2n−1∑
i=0

|ai|2 = 1
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Mathematical representation Quantum logic gates
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Mathematical representation Quantum logic gates

Evolving the system: quantum circuits and quantum gates

I One way of thinking about algorithm design and computation is via
quantum Turing machines

I First described by David
Deutsch in 1985, but both a
quantum Turing machine’s tape
and its read-write head exist in
superpositions of an exponential
number states!

I Instead of using the Turing machine as a computational model,
operations on a quantum computer most often described using
quantum circuits (also introduced by Deutsch a few years later)

I Although circuits are computationally equivalent to Turing machines,
they are usually much simpler to depict, manipulate and understand
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Mathematical representation Quantum logic gates

Quantum gates represent unitary transformations

I Quantum gates are represented as transformation matrices, linear
operators applied to a quantum register by tensoring the operator
with the register

I All quantum linear operators must be unitary:
I If a complex matrix U is unitary, then U−1 = U†, where U† is the

conjugate transpose: U† = U
T

I It follows that UU† = U†U = I
I Unitary operators preserve inner product:

〈u|U†U |v〉 = 〈u| I |v〉 = 〈u|v〉

I The composition of two unitary operators is also unitary:

(UV )† = V †U† = V −1U−1 = (UV )−1
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Mathematical representation Quantum logic gates

The Bloch sphere

x

y

z

|0〉

|1〉

|ψ〉

φ

θ

I Unitary transformations performed on a qubit may be visualized as
rotations and reflections about the x, y, and z axes of the Bloch
sphere

I All linear combinations a0 |0〉+ a1 |1〉 in C2 correspond to all the
points (θ, ψ) on the surface of the unit sphere, where a0 = cos(θ/2)
and a1 = eiφ sin(θ/2) = (cosφ+ i sinφ) sin θ

2
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Mathematical representation Quantum logic gates

The Hadamard operator

H =
1√
2

[
1 1
1 −1

]
=
|0〉+ |1〉√

2
〈0|+ |0〉 − |1〉√

2
〈1|

I Often referred to as a “fair coin flip,” the Hadamard operator applied
to a qubit with the value |0〉 or |1〉 will induce an equal superposition
of the states |0〉 and |1〉:

H |0〉 =
|0〉+ |1〉√

2
〈0|0〉+ |0〉 − |1〉√

2
〈1|0〉 =

|0〉+ |1〉√
2

H |1〉 =
|0〉+ |1〉√

2
〈0|1〉+ |0〉 − |1〉√

2
〈1|1〉 =

|0〉 − |1〉√
2

I Many quantum algorithms begin by applying the Hadamard operator
to each qubit in a register initialized to |0〉n, which puts the entire
register into an equal superposition of states
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Mathematical representation Quantum logic gates

Bloch sphere representation of the Hadamard operator

I Geometrically, the Hadamard operator performs a rotation of π/2
about the y axis followed by a rotation about the x axis by π radians
on the Bloch sphere:

x

y

z

|0〉

|1〉

|0〉+|1〉√
2

φ = 0

θ = π
2

x

y

z

|0〉

|1〉

|0〉−|1〉√
2

φ = π

θ = π
2
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Mathematical representation Quantum logic gates

The Pauli gates

I The three Pauli gates, named after yet another Nobel laureate
Wolfgang Pauli, are also important single-qubit gates for quantum
computation

I The Pauli-X gate swaps the amplitudes of |0〉 and |1〉:

X =
[
0 1
1 0

]
= |1〉 〈0|+ |0〉 〈1|

I The Pauli-Y gate swaps the amplitudes of |0〉 and |1〉, multiplies each
amplitude by i, and negates the amplitude of |1〉:

Y =
[
0 −i
i 0

]
= i |1〉 〈0| − i |0〉 〈1|

I And the Pauli-Z gate negates the amplitude of |1〉, leaving the
amplitude of |0〉 the same:

Z =
[
1 0
0 −1

]
= |1〉 〈0| − |0〉 〈1|
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Mathematical representation Quantum logic gates

Bloch sphere representation of Pauli-X and -Y gates

I The Pauli-X, -Y, and -Z gates correspond to rotations by π radians
about the x, y, and z axes respectively on the Bloch sphere

x

y

z

|0〉

|1〉

φ = 0
θ = π

x

y

z

|0〉

i |1〉

φ = π
2

θ = π
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Mathematical representation Quantum logic gates

Generalized phase shift

I The Pauli-Z gate, altering only the phase of the system, is a special
case of the more general phase-shift gate, which does not modify the
amplitude of |0〉 but changes the phase of |1〉 by a factor of eiθ for
any value of θ:

Rθ =
[
1 0
0 eiθ

]
= |1〉 〈0|+ eiθ |0〉 〈1|

I The Pauli-Z gate is equivalent to the phase-shift gate with θ = π.
I Wolfgang Pauli with friends Werner Heisenberg and Enrico Fermi:

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 34 / 46



Mathematical representation Quantum logic gates

More phase shift gates

I Another special case of the phase-shift gate where θ = π/2 is known
as simply the phase gate, denoted S, which changes the phase of |1〉
by a factor of i:

S =
[
1 0
0 i

]
= |1〉 〈0|+ i |0〉 〈1|

I And the phase-shift gate where θ = π/4 is referred to as the π/8
gate, or T :

T =
[
1 0
0 eiπ/4

]
= |1〉 〈0|+ eiπ/4 |0〉 〈1|

With the name π/8 coming from the fact that this transformation
can also be written as a matrix with π/8 along the diagonal:[

1 0
0 eiπ/4

]
= eiπ/8

[
e−iπ/8 0

0 eiπ/8

]
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Mathematical representation Quantum logic gates

Controlled operations: CNOT

I Quantum computing also makes use of controlled operations,
multi-qubit operations that change the state of a qubit based on the
values of other qubits

I The quantum controlled-NOT or CNOT gate swaps the amplitudes of
the |0〉 and |1〉 basis states of a qubit, equivalent to application of the
Pauli-X gate, only if the controlling qubit has the value |1〉:

control |c〉 • |c〉

target |t〉 �������� |t⊕ c〉
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Mathematical representation Quantum logic gates

Generalized controlled operations

I Controlled operations are not restricted to conditional application of
the Pauli-X gate; Any unitary operation may be performed:

control |c〉 • |c〉

target |t〉 U U c |t〉
I Matrix representation: 

1 0 0 0
0 1 0 0
0 0 x00 x10

0 0 x01 x11


I Dirac equivalent:

|00〉 〈00|+ |01〉 〈01|+ x00 |10〉 〈10|+ x01 |10〉 〈11|
+ x10 |11〉 〈10|+ x11 |11〉 〈11|
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Mathematical representation Quantum logic gates

Controlled operations: Toffoli

I In fact, controlled operations are possible with any number n control
qubits and any unitary operator on k qubits

I The Toffoli gate is probably the best known of these gates

I Also known as the controlled-controlled-NOT gate, the Toffoli gate
acts on three qubits: two control qubits and one target

I If both control qubits are set, then the amplitudes of the target qubit
are flipped:

|c1〉 • |c1〉

|c2〉 • |c2〉

|t〉 �������� |t⊕ c1 · c2〉
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Mathematical representation Quantum logic gates

Toffoli continued

I The Toffoli gate was originally devised as a
universal, reversible classical logic gate by
Tommaso Toffoli

I It is especially interesting because depending on the input, the gate
can perform logical AND, XOR, NOT and FANOUT operations...

I This makes it universal for classical computing!
I Quantum computing is reversible:

I All evolution in a quantum system can be described by unitary
matrices, all unitary transformations are invertible, and thus all
quantum computation is reversible

I The Toffoli gate implies that quantum computation is at least as
powerful as classical computation
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Mathematical representation Computational complexity
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Mathematical representation Computational complexity

Classical computational complexity: a review

I To understand the possible power of quantum computing, it helps to
look at the computational power of quantum computers in relation to
their classical counterparts

I Remember that problems in P are decision problems that can be
solved in polynomial time by a deterministic Turing machine

I The equivalent class for space efficiency is referred to as PSPACE

I NP problems are those that require a nondeterministic Turing
machine in order to be solved efficiently

I The class of NP-complete problems, abbreviated NPC, consists of the
hardest problems in NP

I Every problem in NP can be reduced to a problem in NPC
I If one NPC problem was found to be in P, then all of the problems in

NP would also be in P, proving P = NP
I Most theoretical computer scientests believe that P 6= NP, but nobody

has been successful in proving the conjecture either way.
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Mathematical representation Computational complexity

Classical probabilistic complexity

I There is another important complexity
class called BPP: Bounded-error
Probabilistic Polynomial time

I BPP describes decision problems that
can be solved in polynomial time by a
probabilistic Turing machine

I Probabilistic Turing machines are those with direct access to some
source of truly random input

I In BPP, the error of the solution is bounded in that the probability
that the answer is correct must be at least two-thirds

I Although there are currently problems solvable in BPP that are not in
P, the number of such problems has been decreasing since the
introduction of BPP in the 1970’s

I While it is not yet been proven whether P ⊂ BPP, it is conjectured
that P = BPP
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Mathematical representation Computational complexity

Quantum computational complexity

I Quantum computation introduces a number of new complexity classes
to the polynomial hierarchy

I Probably the most studied complexity class is Bounded-error
Quantum Polynomial time, or BQP

I BQP is the quantum extension of BPP: the class of decision problems
solvable in polynomial time by an innately probabilistic quantum
Turing machine, with the same error constraint as defined for BPP

I Unlike BPP, it is suspected that P ⊂ BQP, which would mean that
quantum computers are capable of solving some problems in
polynomial time that cannot be solved efficiently by a classical Turing
machine!
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A conjectured polynomial hierarchy

PSPACE

NP

BQP

NPC

P
BPP?

primality testing
graph connectivity
maximum matching
GCD

factoring
discrete logarithm

graph isomorphism

boolean satisfiability
subset sum
traveling salesman
map coloring
n× n sudoku

n× n chess
n× n Go
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