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Abstract
Catastrophic forgetting is a key challenge to the
lifelong learning paradigm in machine learning,
which is an attractive alternative to the more
prominent isolated learning scheme not only due
to its resemblance to biological learning, but also
its potential to reduce energy waste by obviat-
ing excessive model re-training. Recently, vari-
ous approaches have been proposed to mitigate
catastrophic forgetting in neural networks. How-
ever, our understanding of the efficacy of these
approaches in practice is limited for the following
reasons: They typically study randomly initialized
networks instead of networks with pre-trained ini-
tializations, rarely experiment with large networks
(such as BERT), and seldom evaluate on a diverse
set of tasks. In response, we investigate existing
methods in the context of large, pre-trained mod-
els and evaluate their performance on diverse text
and image classification tasks. Across all settings,
we observe that generic pre-training implicitly al-
leviates the effects of catastrophic forgetting when
learning multiple tasks sequentially compared to
randomly initialized models. We further study
this phenomenon by analyzing the loss landscape
and show that pre-trained weights implicitly ease
forgetting because they lead to wider minima for
tasks. We also analyze how different pre-training
initializations affect forgetting by conducting a
large-scale study on a novel dataset of 15 diverse
NLP tasks. We conclude that performance de-
pends on both model capacity and qualities of the
pre-training corpora.

1. Introduction
The contemporary machine learning paradigm concentrates
on isolated learning (Chen & Liu, 2018) i.e., learning a
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model from scratch for every new task. In contrast, the
lifelong learning (LL) paradigm (Thrun, 1996; Chen & Liu,
2018; Parisi et al., 2019) defines a biologically inspired
learning approach where models learn tasks in sequence,
ideally preserving past knowledge and leveraging it to effi-
ciently learn new tasks. LL has the added benefit of avoiding
periodical re-training of models from scratch to learn novel
tasks or adapt to new data, with the potential to reduce
both computational and energy requirements (Hazelwood
et al., 2018; Strubell et al., 2019; Schwartz et al., 2020).
In the context of modern machine learning where state-of-
the-art models are powered by deep neural networks, catas-
trophic forgetting has been identified as a key challenge to
implementing successful LL systems (McCloskey & Cohen,
1989; French, 1999). Catastrophic forgetting is when deep
networks forget knowledge learned in previous tasks as in-
formation relevant to the current task is incorporated, and
mitigating this phenomenon is where much of the previous
work in LL has been focused.

At the same time, transfer learning has recently shown im-
pressive results in both computer vision (CV) and natural
language processing (NLP).1 Since the introduction of Ima-
geNet (Deng et al., 2009), the idea of learning generic repre-
sentations and transferring them to other tasks has became
ubiquitous. In this paradigm, representations pre-trained on
ImageNet are fine-tuned on downstream tasks, resulting in
lower sample complexity and higher overall performance.
The field of NLP has followed suit, first with pre-trained
word embeddings (Pennington et al., 2014; Mikolov et al.,
2013), and later large language models (Devlin et al., 2019;
Peters et al., 2018; Howard & Ruder, 2018).

Despite the tremendous success of generic initializations for
transfer learning, little is known about their impact on LL
settings. In CV, most previous work starts with randomly
initialized models when developing LL algorithms. On the
other hand, in NLP, practically all work now develops algo-
rithms based on large pre-trained models. Whereas starting
from a random initialization may provide a more challeng-
ing learning environment, it is simply not practical in the
context of deploying state-of-the-art systems for real-world
tasks. To the best of our knowledge, there has been no work

1One of the original motivations for transfer learning was dis-
cussed as a way to enable lifelong learning, in a NIPS-95 workshop
on “Learning to Learn” (Pan & Yang, 2009).
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Figure 1: Pre-trained and randomly initialized DistilBERT
on Split YahooQA dataset. Performance of the first task
visualized over sequential learning of tasks (averaged across
5 runs). Pre-trained initialization results in significantly
less forgetting.

systematically analyzing the effect of generic pre-trained
initialization on catastrophic forgetting in LL scenarios.

Figure 1 shows that simply changing the network initial-
ization to pre-trained weights can significantly reduce for-
getting on the first task when doing sequential training on
five tasks. This observation motivates us to ask "Does pre-
training implicitly alleviate catastrophic forgetting?". To
answer this question we conduct a systematic study on exist-
ing CV and NLP benchmarks and observe that pre-training
indeed leads to less forgetting, and we hypothesize that
pre-trained weights already have a good inductive bias to
implicitly alleviate forgetting. To explain this behavior we
build upon two separate lines of recent works—Hao et al.
(2019) and Neyshabur et al. (2020) show that in the con-
text of transfer learning, pre-trained weights lead to a flat
basin in the loss landscape when fine-tuning on a single task.
Mirzadeh et al. (2020b) argues that the geometric properties
of the local minima found for each task play an important
role in forgetting, and they propose to modify the training
regime (learning rate decay, batch size, dropout) to widen
the tasks’ local minima.

To verify the above hypothesis, we analyze the loss land-
scape of the first task while the model is training incremen-
tally on subsequent tasks. For pre-trained initialization, we
see that minima obtained after training on a sequence of
tasks still remain in the relatively low loss contour of the
first task when compared with random initialization. Fur-
ther, tracking the loss along the linear interpolation between
the first task’s minima and subsequent ones confirms that
models initialized with pre-trained weights undergo a more
gradual change in the loss compared to randomly initialized
weights. These observations hint at the flatness of the min-
ima reached in the case of pre-trained initialized models.

To quantify the flatness of the loss landscape, we evaluate
the sharpness metric (Keskar et al., 2017) and verify that
pre-trained weights indeed lead to flat basins in compari-
son to random weights while training sequentially. These
analyses help us showcase that continual training from pre-
trained weights induces wide task minima, which is shown
to alleviate forgetting (Mirzadeh et al., 2020b).

We also investigate the effect of the type of pre-trained ini-
tialization by analyzing the extent to which four pre-trained
transformer language model variants (Sanh et al., 2019; De-
vlin et al., 2019; Liu et al., 2019) undergo forgetting. On an
existing benchmark spanning 5 diverse NLP tasks (de Mas-
son d’Autume et al., 2019), we observe that increasing the
capacity of the model and diversity of the pre-training cor-
pus play an important role in alleviating forgetting. To
further stress-test these models on a large number of diverse
tasks, we introduce a dataset with 15 diverse NLP tasks
and observe that forgetting becomes more prominent in this
setting across all four models.

Our main contributions can be summarized as follows:

• We observe that initializing models with generic pre-
trained weights results in less forgetting compared to
random weights despite achieving higher performance
on each task. To bolster this observation, we perform a
systematic study and validate that this behavior persists
across applications (NLP and CV) and in the context
of two existing approaches: Elastic weight consolida-
tion (Kirkpatrick et al., 2017) and experience replay
(Chaudhry et al., 2019). We note that sequential train-
ing on diverse tasks is still challenging for models
initialized with pre-trained weights.

• We examine the above-mentioned behavior from the
loss landscape perspective. We hypothesize and empiri-
cally verify that pre-trained models alleviate forgetting
as they have an implicit bias towards wider task min-
ima. The effect of these wider minima is that changes
in weights from learning subsequent tasks results in
a smaller change to the current task loss, which helps
reduce forgetting.

• To understand the role of varying pre-trained initial-
izations, we analyse a suite of pre-trained Transformer
language models and showcase that model capacity
and diversity of the pre-training corpus do play a role
in alleviating forgetting.

• For the pre-training initialization study, we introduce a
new benchmark for lifelong learning in NLP consisting
of 15 diverse NLP tasks, which proves more challeng-
ing than previous settings for the Transformer models
considered in our study.
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2. Related Work
Transfer learning from generic pre-trained models has en-
abled significant recent progress in ML (Zhuang et al., 2021).
This trend started in the CV field with the ImageNet dataset
(Deng et al., 2009). Transfer learning in NLP has witnessed
its own “ImageNet revolution” where large models pre-
trained on self-supervised tasks have shown impressive re-
sults across many language understanding tasks (Peters et al.,
2018; Howard & Ruder, 2018; Radford et al., 2018; Devlin
et al., 2019; Raffel et al., 2019; Liu et al., 2019).

Lifelong learning approaches focus on mitigating the catas-
trophic forgetting phenomenon and can be categorized into
three groups: (1) Regularization-based approaches augment
the loss function with extra penalty terms preventing impor-
tant parameters learned on previous tasks from significantly
deviating while training on the new task (Kirkpatrick et al.,
2017; Zenke et al., 2017); (2) memory-based approaches
augment the model with episodic memory for sparse ex-
perience replay of previous task examples (Lopez-Paz &
Ranzato, 2017; Chaudhry et al., 2018; Wang et al., 2020)
(3) network expansion-based approaches dynamically ex-
pand the network based upon new tasks (Rusu et al., 2016;
Aljundi et al., 2017; Sodhani et al., 2020). We consider
regularization and memory-based approaches in this work.

Meta-learning involves creating models that learn to learn
over time. Several works propose meta-learning-based ap-
proaches for LL (Riemer et al., 2019; Finn et al., 2019; Javed
& White, 2019; Wang et al., 2020). Caccia et al. (2020) pro-
pose a two-phase continual learning scenario where the first
phase is pre-training (using MAML (Finn et al., 2017)) and
the second phase involves continual deployment with task
revisiting. They make the point that in many scenarios
(Lomonaco et al., 2019), it would be unrealistic to deploy
agents with no pre-training in a LL setting. Whereas some
of these works do use pre-trained initializations for their
models, many do not, and none have extensively studied the
effect of pre-training on alleviating catastrophic forgetting.

Optimization and loss landscape. Hao et al. (2019) show
that for single-task generalization, pre-training leads to
wider optima for BERT models. Keskar et al. (2017) explore
how larger batch sizes lead to sharper minima and worse
generalization in the single-task learning setting. Mirzadeh
et al. (2020b) look at how catastrophic forgetting can be
impacted by the training regime, and show that certain hy-
perparameter settings produce wider minima which lead to
less catastrophic forgetting. Finally, Mirzadeh et al. (2020a)
compare minima that result from multitask learning and
continual learning, and show that the the minima resulting
from continual learning are linear mode connected to the
optimal sequential multitask minima, but not to each other,
which results in forgetting and a corresponding drop in per-
formance. All of these works either explore the relation

between pre-training and flatness of minima in single-task
settings, or between flatness of minima and model general-
ization capability. We extend this line of work by examining
whether benefits from pre-training can persist across train-
ing on several tasks, assessing the effects of pre-training
on loss landscapes over the course of LL, and validating a
hypothesis explaining the effects of pre-training on LL.

3. Preliminaries
3.1. Problem Setup

We consider a setup where we receive a continuum
of data from different tasks in sequential manner:
(x1, y1, t1), · · · , (xi, yi, ti), · · · . Each triplet (xi, yi, ti)
consists of a task descriptor ti ∈ T , input data xi ∈ Dti and
target labels yi ∈ Yti . In our setup, we consider an explicit
task descriptor ti because the same input xi can appear in
multiple different tasks but with different labels. For exam-
ple, we can have a product review with positive sentiment
along with the grammatical acceptability judgements. Fol-
lowing Lopez-Paz & Ranzato (2017), we assume that the
continuum is locally i.i.d, i.e., each triplet (xi, yi, ti) satis-
fies (xi, yi)

iid∼ Pti(X,Y ). Based upon the observed data,
our goal is to learn a predictor f : X × T → Y where we
want to evaluate test pairs (x, t) from previously observed
tasks (backward transfer) and current task at any time during
the continual training of our model.

3.2. Datasets and Tasks

We conduct experiments on CV and NLP applications, using
the following datasets:

Split CIFAR-100 This dataset is based on the CIFAR-100
image classification dataset (Krizhevsky & Hinton, 2009).
The 100 classes are randomly split into 20 5-way classifica-
tion tasks, with each task containing 2500 train examples
and 500 test examples.

Split CIFAR-50 This dataset takes the first 50 classes of the
CIFAR-100 dataset, and randomly splits them into five 10-
way classification tasks. Each task contains 5000 training
examples and 1000 test examples. This dataset serves as a
homogeneous counterpart to the diverse 5-dataset, so it was
constructed to match the structure and length of 5-dataset.

5-dataset (Ebrahimi et al., 2020) consists of five 10-way
image classification datasets: CIFAR-10 (Krizhevsky & Hin-
ton, 2009), MNIST (LeCun, 1998), Fashion-MNIST (Xiao
et al., 2017), SVHN (Netzer et al., 2011), and notMNIST
(Bulatov, 2011).

Split YahooQA This dataset is a 10-way topic classification
dataset (Zhang et al., 2015) used to create five 2-way classi-
fication tasks. We randomly split topics into different tasks.
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Each task contains around 279, 000 training examples and
12, 000 testing examples.

5-dataset-NLP consists of text classification datasets
(Zhang et al., 2015) from five diverse domains and con-
stitutes four tasks: (1) News classification (AGNews, 4-way
classification); (2) Sentiment analysis (Yelp, Amazon, 5-
way classification); (3) Wikipedia article classification (DB-
Pedia, 14-way classification); and (4) question and answer
topic categorization (YahooQA, 10-way classification). We
follow the data processing procedure mentioned in (de Mas-
son d’Autume et al., 2019) and have 115, 000 training ex-
amples and 7, 600 test examples per domain.

15-dataset-NLP consists of 15 diverse text classification
tasks: (1) CoLA (Warstadt et al., 2019); (2) BoolQ (Clark
et al., 2019); (3) SST-2 (Socher et al., 2013); (4) QQP2;
(5) YahooQA (Zhang et al., 2015); (6) Yelp (Zhang et al.,
2015); (7) Event Factuality (Poliak et al., 2018); (8) Ar-
gument Aspect Mining (Stab et al., 2018); (9) Explicit
Discourse Marker Prediction (Prasad et al., 2019; Kim
et al., 2020); (10) QNLI (Wang et al., 2018); (11) Roc-
story (Mostafazadeh et al., 2016); (12) MNLI (Williams
et al., 2018); (13) SciTail (Khot et al., 2018); (14) Implicit
Discourse Relation Classification (Prasad et al., 2019; Kim
et al., 2020); and (15) Emotion Detection (Saravia et al.,
2018). For more details on this dataset, see Appendix B.

3.3. Evaluation

Let St,τ denote the score (e.g., accuracy) on the task τ after
training on task t. After model finishes training on the
task t, we compute the average accuracy (At) , forgetting
(Ft) and learning accuracy (LAt) metrics as proposed by
(Lopez-Paz & Ranzato, 2017; Riemer et al., 2019). Ft
measures the influence of learning task t on the performance
of all previously seen tasks τ, (1 ≤ τ < t). LAt measures
the learning capability when model sees the new task t. Say
we learn the tth task, then At, Ft and LAt are defined as
follows:

At =
1

t

t∑
τ=1

St,τ ;LAt =
1

t

t∑
τ=1

Sτ,τ

Ft =
1

t− 1

t−1∑
τ=1

max
τ ′∈{1,··· ,t−1}

(Sτ ′,τ − St,τ ) (1)

3.4. Methods

We consider prominent approaches from the literature for
our analysis. We first consider the finetune (FT) approach,
where we simply fine-tune the model on each task in se-
quence with no additional constraints on learning. Elastic
weight consolidation (EWC) (Kirkpatrick et al., 2017) is

2https://www.quora.com/share/First-Quora-Dataset-Release-
Question-Pairs

a regularization-based approach that tries to mitigate forget-
ting by limiting learning for parameters important to previ-
ously learned tasks, as measured by the Fisher information
matrix. In the experience replay (ER) (Chaudhry et al.,
2019) method, we augment the base model with episodic
memory module which retains examples from the previously
seen tasks. We retain one example per task per class and
randomly select examples for storage.

4. Does pre-training implicitly alleviate
forgetting?

Having defined the formal problem definition, evaluation
metrics, and methods for alleviating the forgetting phe-
nomenon, in this section we conduct experiments to tease
apart the role of pre-training for LL. We are interested in
answering the following questions: (Q1) How much does
pre-training help in alleviating the forgetting? (Q2) Do
pre-trained weights undergo similar forgetting on diverse
(5-dataset, 5-dataset-NLP) and homogeneous tasks (Split
CIFAR-50, Split YahooQA)? (Q3) How do different pre-
trained initializations affect forgetting?

Experimental design. To answer these questions convinc-
ingly, we select various datasets across text and vision do-
mains. For text classification, we conduct experiments on
Split YahooQA, 5-dataset-NLP, and 15-dataset-NLP. For
image classification, we consider Split CIFAR-50, Split
CIFAR-100, and 5-dataset. We utilize the DistilBERTBASE
(Sanh et al., 2019) architecture for text classification and the
ResNet-18 (He et al., 2016) architecture for image classifi-
cation. To isolate the effect of pre-training, we consider two
variants for each of these architectures: pre-trained models
(DistilBERT-PT, ResNet-18-PT) and randomly initialized
models (DistilBERT-R, ResNet-18-R). For our study, we
need to ensure that there are as few confounding factors as
possible. Therefore, we keep all other hyperparameters the
same and vary only the initialization (for more details refer
to Appendix A). To measure the severity of forgetting, we
ideally want sufficient training samples to ensure either a
pre-trained model or randomly initialized model of the same
capacity can achieve similar learning accuracy on each task.
To control for this behavior we either select a large training
corpus whenever available (e.g., 279k examples for the Split
YahooQA task) or run our experiments for multiple epochs
(5 epochs for CV tasks).

4.1. How much does pre-training help in alleviating
forgetting?

From Table 1, we see that models with pre-trained initial-
izations (ResNet-18-PT, DistilBERT-PT) undergo signifi-
cantly less forgetting in comparison to models with ran-
dom initializations (ResNet-18-R, DistilBERT-R). This
trend holds across all three methods. For text classifica-
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Table 1: Comparing performance in terms of average accuracy, forgetting, and learning accuracy for Finetune, EWC, ER
methods after training on the last task. ↑ indicates higher is better, ↓ indicates lower is better. All metrics are averaged
across 5 runs. Overall, we observe that pre-trained initialization undergoes significantly less forgetting compared to
the randomly initialized model.

w/o Pretraining (ResNet-18-R/ DistilBERT-R) w/ Pretraining (ResNet-18-PT/ DistilBERT-PT)

Accuracy(%) ↑ Forgetting(%) ↓ LA(%) ↑ Accuracy(%) ↑ Forgetting(%) ↓ LA(%) ↑

Split YahooQA (1 epoch)
Finetune 71.18(±4.94) 28.76(±6.16) 94.20(±0.01) 85.89(±3.60) 11.68(±4.51) 95.23(±0.02)
EWC 79.67(±1.98) 18.15(±2.49) 94.19(±0.00) 90.81(±1.59) 5.49(±1.98) 95.21(±0.02)
ER 76.93(±1.04) 21.60(±1.32) 94.22(±0.02) 89.26(±0.72) 7.45(±0.90) 95.22(±0.04)

5-dataset-NLP (1 epoch)
Finetune 45.36(±4.32) 35.30(±5.44) 73.60(±0.04) 64.25(±4.52) 16.77(±5.64) 77.67(±0.07)
EWC 56.50(±4.43) 21.11(±5.65) 73.39(±0.09) 70.12(±2.09) 9.15(±2.71) 77.44(±0.11)
ER 55.41(±3.39) 22.70(±4.35) 73.57(±0.10) 70.28(±1.61) 9.27(±2.06) 77.70(±0.01)

Split CIFAR50 (1 epoch)
Finetune 37.87(±2.79) 8.09(±2.27) 45.75(±1.16) 88.57(±1.01) 3.02(±0.61) 91.59(±0.63)
EWC 38.28(±0.76) 6.12(±1.69) 44.40(±1.43) 88.63(±0.84) 3.12(±0.79) 91.75(±0.57)
ER 37.78(±2.58) 8.61(±1.36) 46.34(±1.71) 88.90(±0.72) 2.71(±0.73) 91.49(±0.38)

5-dataset (1 epoch)
Finetune 29.41(±4.45) 39.40(±6.00) 68.62(±2.67) 62.58(±5.42) 31.02(±5.42) 93.60(±0.29)
EWC 31.57(±6.92) 37.47(±2.81) 69.05(±4.81) 64.43(±3.83) 29.20(±3.92) 93.63(±0.33)
ER 37.94(±8.58) 29.97(±7.62) 67.90(±3.26) 72.67(±2.59) 20.53(±2.59) 93.19(±0.32)

Split CIFAR100 (1 epoch)
Finetune 45.76(±3.17) 18.28(±2.26) 63.65(±1.41) 89.09(±1.47) 6.05(±1.06) 95.06(±0.67)
EWC 46.00(±2.78) 18.13(±2.32) 63.78(±0.98) 89.44(±1.48) 5.71(±0.88) 95.03(±0.64)
ER 52.26(±1.44) 14.30(±0.80) 65.97(±0.70) 90.23(±1.44) 5.19(±0.94) 95.05(±0.54)

Split CIFAR50 (5 epochs)
Finetune 42.76(±3.14) 23.68(±1.09) 66.44(±2.14) 88.96(±1.48) 5.20(±0.80) 94.16(±0.68)
EWC 45.28(±2.53) 20.65(±1.47) 65.93(±1.28) 88.98(±1.03) 5.31(±0.58) 94.29(±0.46)
ER 45.76(±1.76) 20.63(±1.41) 66.38(±2.65) 88.77(±0.85) 5.16(±0.54) 93.93(±0.40)

5-dataset (5 epochs)
Finetune 33.72(±2.53) 51.51(±2.58) 85.23(±1.99) 58.63(±2.70) 36.96(±2.68) 95.59(±0.16)
EWC 31.57(±6.92) 37.47(±2.81) 69.05(±4.81) 57.23(±4.18) 38.35(±3.95) 95.58(±0.34)
ER 50.58(±4.50) 35.02(±5.35) 85.60(±1.31) 70.92(±4.00) 24.32(±3.89) 95.25(±0.37)

Split CIFAR100 (5 epochs)
Finetune 38.89(±2.20) 39.11(±2.20) 77.96(±0.96) 85.47(±1.41) 10.91(±1.23) 96.37(±0.55)
EWC 37.37(±1.47) 40.12(±1.82) 77.47(±1.54) 85.79(±0.90) 10.63(±0.51) 96.42(±0.59)
ER 48.60(±1.86) 29.84(±1.32) 78.10(±0.66) 88.67(±1.64) 7.65(±1.23) 96.29(±0.61)

tion tasks (Split YahooQA, 5-dataset-NLP), we see that
both models have comparable learning accuracy (LA) and
significantly less forgetting for DistilBERT-PT. This can be
completely attributed to the pre-trained initialization. For
image experiments, we see that ResNet-18-R suffers from
low learning accuracy when trained in an online fashion (1
epoch). This can be addressed by increasing the number
of epochs (to 5). For example, we see that the learning
accuracy on 5-dataset increases from 68 to around 85 when
the number of epochs is increased. Now on 5-dataset with
5 epochs, ResNet-18-PT (36.96) undergoes less forgetting
when compared to ResNet-18-R (51.51). Specifically, de-
spite task accuracy starting at a higher base for ResNet-18-
PT, the absolute forgetting value is still lower compared
to ResNet-18-R models. Additionally, this effect also holds
when considering a sequentially finetuned pre-trained model
(with no additional regularization to alleviate forgetting) to
a randomly initialized model trained with state-of-the-art
LL methods. For example, on 5-dataset-NLP, sequentially
finetuning DistilBERT-PT undergoes less forgetting (16.77)

compared to the state-of-the-art ER method (22.79) when
applied to DistillBERT-R. This raises an interesting research
direction — explicitly focusing on learning generic features
while training sequentially apart from just focusing on the
forgetting aspect of LL.

4.2. Do pre-trained weights undergo similar forgetting
on diverse and homogeneous tasks?

Most work in the LL literature evaluate algorithms on
the Split MNIST, Split CIFAR-10, Split CIFAR-100, and
FewRelations benchmarks (Chaudhry et al., 2019; Wang
et al., 2019), which are homogenous in nature; different
tasks in these benchmarks are sourced from the same under-
lying data distribution. From Table 1, we see that ResNet-18-
PT does not undergo a significant amount of forgetting when
sequentially fine-tuned on Split CIFAR-50, Split CIFAR-
100 (homogenous tasks). On Split CIFAR-50, forgetting is
around 3-5 accuracy points. Surprisingly, the state-of-the-art
ER method also undergoes a similar amount of forgetting,
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Table 2: Comparing performance in terms of average accuracy, forgetting, and learning accuracy for sequential finetuning
after training on the last task. ↑ indicates higher is better, ↓ indicates lower is better. All metrics are averaged across 5 runs.
Overall, we observe that models pre-trained on diverse corpora (RoBERTaBASE) undergo minimal forgetting across
both 5 and 15 diverse tasks.

Model |θ| 5-dataset-NLP (1 epoch) 15-dataset-NLP (1 epoch)

Accuracy(%) ↑ Forgetting(%) ↓ LA(%) ↑ Accuracy(%) ↑ Forgetting(%) ↓ LA(%) ↑

DistilBERTBASE 66M 64.25(±4.52) 16.77(±5.64) 77.67(±0.07) 47.51(±4.16) 18.33(±4.94) 64.57(±1.09)
BERTBASE 110M 67.02(±2.40) 14.24(±2.92) 78.42(±0.08) 51.79(±1.72) 20.35(±1.95) 70.78(±0.33)
RoBERTaBASE 336M 71.25(±1.60) 9.80(±1.92) 79.10(±0.10) 55.35(±1.43) 20.57(±1.38) 74.54(±0.66)
BERTLARGE 125M 71.62(±1.47) 9.42(±1.84) 79.16(±0.04) 48.43(±9.36) 27.98(±8.15) 74.55(±1.76)

thereby raising a question about the applicability of these
datasets when studying forgetting in the context of the pre-
trained ResNet models. It may be possible to manually clus-
ter tasks based upon semantic closeness, rendering severe
interference to make these benchmarks more challenging
(Ramasesh et al., 2020). Given the generic nature of the pre-
trained initialization, we ask: What happens when we train
the model sequentially on diverse datasets, where diverse
datasets are ones that span multiple sources? To answer
this question, we conduct experiments on 5-dataset (image
classification) and 5-dataset-NLP (text classification). From
Table 1, we empirically observe that pre-trained mod-
els are susceptible to forgetting when exposed to diverse
tasks. Particularly, DistilBERT-PT undergoes a 16.77 point
drop in accuracy when trained on 5-dataset-NLP. Similarly,
ResNet-18-PT undergoes a 31.02 point drop in accuracy
when trained on 5-dataset.

4.3. How do different pre-trained initializations affect
forgetting?

To examine the impact of varying pre-trained initial-
ization on forgetting, we choose to evaluate different
pre-trained Transfomer models, DistilBERTBASE (Sanh
et al., 2019), BERTBASE, BERTLARGE (Devlin et al., 2019),
RoBERTaBASE (Liu et al., 2019), on text classification tasks.
From the previous subsection, we observe that pre-trained
models are relatively more susceptible to forgetting when
sequentially training on diverse tasks. In response, we con-
duct a thorough investigation on the 5-data-NLP dataset.
From Table 2, we observe that when keeping the pre-
training corpora the same and increasing the capacity of
the model — DistilBERTBASE (66M), BERTBASE (110M),
and BERTLARGE (336M) — we observe that larger models
undergo less forgetting on sequential training of diverse
NLP tasks. Further, to explore the impact of the diver-
sity of the pre-training corpora, we compare BERTBASE
(110M) with RoBERTaBASE (125M). We observe that the
RoBERTaBASE model performs far superior to BERTBASE,
thus hinting at the necessity of diverse pre-training corpora
to implicitly alleviate forgetting. Further, to stress-test these
models, we introduce a novel suite of 15 diverse text classifi-

cation tasks (for more details see Appendix B). We observe
that by increasing the number of tasks in the sequence,
pre-trained models undergo severe forgetting. Surprisingly,
the RoBERTaBASE model out-performs BERTLARGE despite
having many fewer parameters. We conclude based on the
empirical results that diversity of pre-training corpora
is highly relevant when it comes to easing catastrophic
forgetting while training on a diverse sequence of tasks.

5. Exploring the Loss Landscape
To better understand how pre-training reduces forgetting, we
perform experiments analyzing where models are situated
in the loss landscape after training on each task. We denote
model parameters after training on task k aswk. If we define
forgetting as the increase in loss for a given task during
training , Mirzadeh et al. (2020b) show that the forgetting
can actually be bounded by:

L1(w2)− L1(w1) ≈ 1

2
∆w>∇2L1(w1)∆w ≤ 1

2
λmax1 ‖∆w‖2

(2)

where L1(w) represents the loss on Task 1 with parameters
w, ∆w = w2 − w1, and λmax1 is the largest eigenvalue of
∇2L1(w1). The magnitude of the eigenvalues of L1(w) can
be used to characterize the curvature of the loss function
(Keskar et al., 2017), and thus λmax1 can be thought of as a
proxy for the flatness of the loss function (lower is flatter).
From Equation 2, we can see that the flatter the minima, the
less forgetting occurs in the model.

We hypothesize that the improvements from pre-training
shown in the previous section might be because pre-training
leads to a more favorable loss landscape. Specifically, pre-
training results in wider, flatter minima for each task. The
effect of these wider minima is that the change in weights
from learning on future tasks results in a smaller change
on the actual loss for the current task, which leads to less
forgetting. We verify this idea in two parts for models
trained using the FT method. First we use loss contours and
a sharpness metric to show that pre-training leads to flatter
minima. We then interpolate between model checkpoints to
show that the wider optima lead to smaller changes in loss.
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Figure 2: Loss contours for Task 1 on each dataset. Each contour visualizes the model parameters after training on each of
the first three tasks for randomly initialized models (top row) and pre-trained initialized models (bottom row). Pre-training
results in significantly wider optima.

5.1. Loss Contour

In Figure 2, we visualize the contours of the test loss for the
Task 1. We plot the locations of the model (w1, w2, w3) after
training on each of the first three tasks. Pre-training results
in significantly wider optima. In fact, as the model is trained
on tasks sequentially, the pre-trained model still remains
mostly at the same loss level as compared to randomly
initialized models, despite moving approximately the same
(or even more) euclidean distance away from the original
model. For example, in the plot for the pre-trained model on
5-dataset (Figure 2e), the model after the second task (w2)
remains at the same Task 1 loss level as after just training
on Task 1 (w1). It is a couple of loss levels higher for task
3 (w3). For the randomly initialized model (Figure 2a), the
euclidean distances between the model parameter vectors
are approximately the same as for the pre-trained model, but
the differences in Task 1 loss levels are significantly higher.

5.2. Sharpness

As another measure of the wideness of the minima, we cal-
culate a sharpness metric (Keskar et al., 2017) for the model
on each task as it goes through training. The metric tries
to find the maximum value of the loss in the neighborhood
of the minima, and calculates the difference between the
maximum and the minimum loss value, scaled by the loss
value. The maximization is performed in a subspace of the
entire parameter space Rn, specified by a projection matrix
A ∈ Rn×p. For our experiments, we randomly sample our
matrix A and set p = 100 as in Keskar et al. (2017). The
neighborhood of the metric is given by Equation 3, where

A+ is the pseudo inverse of A, x is the parameter vector
and ε is a hyperparameter controlling the size of the neigh-
borhood. Equation 4 defines the sharpness metrics, where
f(x) denotes the loss value with parameters x. We calcu-
late the sharpness metric at ε = 5× 10−4 and 10−3. After
training on each task, we compute the sharpness values of
the minima reached by the model on that task. We then
take the sharpness value of the run to be the mean of the
values across the sequence of tasks. We present the mean
and standard deviation across 5 runs.

Cε = {z ∈ Rp : −ε(|(A+x)i|+ 1) ≤ zi
≤ ε(|(A+x)i|+ 1) ∀i ∈ {1 . . . p}} (3)

φx,f :=
(maxy∈Cε f(x+Ay))− f(x)

1 + f(x)
× 100 (4)

For the language models, we encountered problems allocat-
ing and inverting A because of the large memory require-
ments (further explanation of the implementation is given
in Appendix A). Thus, we only present the sharpness values
for the vision experiments in Figure 3a. We see that for
all datasets, the sharpness values for the pretrained initial-
ized models are significantly lower than the values for the
randomly initialized models.

5.3. Linear Model Interpolation

Ideally, to minimize forgetting, as the model sequentially
trains on tasks, its loss on previous tasks would not change.
This would be satisfied if the loss surface between model
checkpoints were flat. To visualize this, we linearly inter-
polate between w1 and the other checkpoints of the model,
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(a) Average sharpness (log scale; lower is
flatter) of minima across tasks in a 100 di-
mensional random subspace. Pre-training re-
duces the sharpness of minima by an order
of magnitude.
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(b) Loss interpolation plots for each dataset. Blue is pre-trained models, red is randomly
initialized models. We interpolate between the checkpoint after Task 1 to the checkpoint
after every other task, tracking the loss in the process. In general, the loss landscape
is flatter along these paths for pre-trained initialization models compared to ran-
domly initialized models.

Figure 3: Sharpness metrics and linear interpolation plots for pre-trained and random initialized models.

tracking the test loss on Task 1. This can be interpreted
as viewing a slice of the contour plots shown in Figure 2
along the line that connects w1 to each checkpoint. The
results are shown in Figure 3b. The pre-trained plots are
shown in hues of blue, and the random plots are shown in
hues of red. These plots show that the pretrained initialized
models experience a much more gradual increase in the loss
compared to the randomly initialized models, even when
interpolating to checkpoints created after training on several
tasks. We provide more instances of these visualizations in
Appendix C.

6. Discussion
In this paper, we study the effect of pre-training on lifelong
learning across a variety of datasets and modalities, and we
find that compared to models with random initializations,
models with pretrained initializations undergo significantly
less forgetting. Specifically, despite task accuracy starting at
a higher base for pre-trained models, the absolute forgetting
value is still lower for pre-trained models. This effect even
holds when comparing a sequentially finetuned pre-trained
model (with no additional regularization to improve perfor-
mance or reduce forgetting) to a randomly initialized model
trained with state-of-the-art lifelong learning methods.

To explain this effect, we perform several analyses of the
loss landscapes produced in the course of training.We find
that the minima created by the pre-trained models at the

end of training on each task are significantly flatter and
wider than those created by the randomly initialized models.
This means that even when pre-trained models drift away
from the original flat task minima, the task loss does not
increase significantly, which results in less forgetting. We
also explore the effect of different pre-trained models on per-
formance for an NLP domain and find that while increased
model capacity helps up to a certain point when consider-
ing shorter task sequences, when considering longer and
more diverse task sequences, the quality of the pre-trained
representations matter much more than model capacity.

Based on these results, a potential line of work could be
to develop a regularizer that keeps the model from drifting
too far from the pre-trained initialization, instead search-
ing for task minima in the low loss basin. It could also be
interesting to explore where the multitask minima are in
relation to the pre-trained initialization, as Mirzadeh et al.
(2020a) show that the sequential multitask minima are linear
mode connected to minima after each task in lifelong learn-
ing. The flatness of the minima for every model starting
from a pre-trained initialization could suggest a way to reg-
ularize the sequential training process with the pre-trained
initialization such that that the model ends up at the multi-
task minima. One final takeaway from these results is that
lifelong learning methods should focus on creating more
general representations instead of simply reducing catas-
trophic forgetting, as more general representations appear
to result in more robust learning.
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A. Implementation Details
Vision Experiments For all vision experiments, we use the full ResNet-18 (He et al., 2016) architecture, with the final
linear layer replaced (the number of outputs corresponds to the total number of classes in all given tasks). During inference,
only the subset of outputs corresponding to the given task is considered. All images are resized to 224×224, and normalized
with µ = (0.485, 0.456, 0.406) and σ = (0.229, 0.224, 0.225). We used a SGD optimizer with the learning rate set to .01
for all methods (we did a hyperparameter search for both pre-trained and randomly initialized models and found the learning
rate 0.01 resulted in a good learning accuracy for both pre-trained and randomly initialized models). The batch size was set
to 10 for the Split CIFAR-50 and Split CIFAR-100 experiments and 64 for the 5-dataset experiments. The memory per class
for ER was set to 1, and the λ parameter for EWC was also set to 1.

NLP Experiments For most of the text classification experiments, we use the Transformer architecture based text encoder,
DistilBERTBASE (Sanh et al., 2019) to encode our input. In a single sentence text classification task, xt is an input sentence
to be classified. In a sentence-pair classification task, concatenation of x1t and x2t sentences separated by a [SEP ] symbol is
considered as a input xt. DistilBERT produces a contextual representation of each token in xt including a special beginning
of the sentence token symbol [CLS]. We use the representation of the [CLS] symbol from model as features for a linear
task classifier. We have a separate classifier for each task. We mainly set hyper-parameters to default implementation
from HuggingFace.3 We use Adam as our optimizer, set dropout 0.1, the base learning rate to 2e−5, batch size to 32 and
the maximum total input sequence length after tokenization to 128. For EWC, following (Wang et al., 2020), we set the
regularization strength λ to 5000 and for ER, following (Chaudhry et al., 2019), the memory per class per task is set to 1.

A.1. Sharpness

The matrix A ∈ Rn×p used for projecting the parameters onto a subspace is randomly sampled and then normalized
row-wise. Since this matrix is very large, the computation of the pseudo inverse A+ (required for calculating the bounds in
Equation 3) is very memory intensive and unstable. Instead, we directly calculate A+x by finding the least squares solution
to Ab = x. To find the maximum referenced in Equation 4, we use the L-BFGS-B algorithm.4 We set the maximum number
of iterations for the algorithm to 10, and to speed up computation, we directly provide the gradients along with the loss to
the algorithm, instead of using the default 2-point finite difference gradient estimation.

For ResNet-18 (n = 11M ), we set p = 100. However, for DistilBERT (n = 66M ) when we set p = 100, we notice
extremely small values for the sharpness metric. With the increase in the number of parameters, n, we should ideally
increase random subspace projection dimension p. Setting larger p(> 100) values for DistilBERT, however, leads to memory
issues relating to allocating space for A and computing the bounds (even with the more efficient method discussed above).
So instead of evaluating the sharpness metric in a random manifold, we perform the maximization in the entire space
Rn (basically setting A = In). According to Keskar et al. (2017), when ε is small enough and A = In, the sharpness
metric in Equation 4 relates to the largest eigenvalue of ∇2f(x). In Table 3, we report sharpness values for DistilBERT
on 5-dataset-NLP and Split YahooQA datasets for ε ∈ {5e−5, 1e−4, 5e−4}. We see that values in the case of pre-trained
models (w/ PT) are lower compared to randomly initialized models (w/o PT), thereby, validating the relative flatness of the
task minima in the case of pre-trained models.

Table 3: Average sharpness (lower is flatter) of tasks minima. DistilBERT-PT (w/ PT) reduces the sharpness in comparison
to DistilBERT-R (w/o PT).

ε = 5× 10−5 ε = 10−4 ε = 5× 10−4

w/o PT w/ PT w/o PT w/ PT w/o PT w/ PT

5-dataset-NLP 32.67± 1.17 28.27± 1.19 213.61± 11.46 128.97± 10.49 596.82± 13.70 552.09± 17.28
Split YahooQA 10.41± 0.39 8.77± 0.44 53.23± 7.02 43.03± 4.21 545.06± 6.40 422.85± 44.31

3https://github.com/huggingface/transformers
4We used the implementation provided by scipy at https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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B. Datasets
One of the objectives of our work is to study the role of different pre-trained initializations in lifelong learning. To enable
this study, we introduce 15-dataset-NLP, a novel suite of diverse tasks for lifelong learning. It consists of fifteen text
classification tasks covering a broad range of domains and data sources. Although there exists a setup with 4 tasks spanning
5 datasets, 5-dataset-NLP (de Masson d’Autume et al., 2019), we show that our introduced benchmark proves more
challenging (see Table 2 and Section 4.3) than the previous setup for the Transformer models (e.g., DistilBERT, BERT,
RoBERTa) considered in our study.

15-dataset-NLP benchmark consists of single sentence or sentence pair classification tasks. We design our benchmark from
existing tasks such that (1) the overall dataset includes various domains, (2) different tasks are (dis)similar to each other,
thereby, facilitating both transfer and interference phenomena. All tasks under consideration differ in dataset size (from
8.5k-400k), so for our experiments, we only use between 8.5-14k training examples from each task. Lifelong learning from
highly imbalanced data is an interesting problem, and we feel that our introduced benchmark can be used to investigate this
problem as well. As our data is gathered from publicly available sources, for some tasks we do not have access to hidden
test examples. In such cases, we consider dev examples as test split and sample examples from train split for validation5.
We describe the tasks below and Table 4 details the evaluation metrics and train/dev/test split sizes for each task.

1. Linguistic acceptability aims at identifying whether the given sequence of words is a grammatical sentence. The
Corpus of Linguistic Acceptability (CoLA) ((Warstadt et al., 2019) consists of English sentences annotated with their
grammatical judgements. The data spans multiple domains, specifically books and journal articles.

2. Boolean QA is a reading comprehension task of answering yes/no questions for a given passage. The Boolean Questions
(BoolQ) (Clark et al., 2019) dataset consists of short passages with yes/no questions about the passage. The questions
are sourced from anonymous Google users and paired up with passages from Wikipedia articles.

3. Sentiment analysis is a binary classification task of identifying the polarity (positive/negative sentiment) of a given text.
The Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) corpus consists of sentences from Rotten Tomatoes
movie reviews annotated with their sentiment.

4. Paraphrase detection aims at identifying whether two sentences are semantically equivalent. The Quora Question Pairs
(QQP) corpus constitutes of question pairs from Quora6 website annotated for semantic equivalence of question pairs.

5. Q&A categorization is a topic classification task of categorizing question and answer text pairs into existing topics.
The Yahoo! Answers Comprehensive Questions and Answers (YahooQA) (Zhang et al., 2015) corpus contains data
corresponding to the ten largest categories from Yahoo! Webscope program.

6. Review rating prediction is a five-way classification task of predicting the number of stars the user has given in a review
given the corresponding text. The Yelp (Zhang et al., 2015) dataset contains business reviews obtained from the Yelp
Dataset Challenge (2015).

7. Event factuality prediction is the task of determining whether an event described in the text occurred. The factuality
annotations from the Decomp corpus are recast into an NLI structure and we use the modified dataset from Diverse
NLI Collection (Poliak et al., 2018).

8. Argument aspect mining is concerned with the automatic recognition and interpretation of arguments (assessing the
stance, source, and supportability for a given topic). The Argument Aspect Corpus (AAC) (Stab et al., 2018) has over
25,000 arguments spanning eight topics annotated with three labels (no argument, supporting argument, opposing
argument). Stab et al. (2018) collected the data from web documents representing a range of genre and text types,
including blogs, editorials, forums, encyclopedia articles.

9. The explicit discourse marker prediction task aims at classifying the discourse markers between sentences. Specifically,
words like ’and’, ’but’, ’because’, ’if’, ’when’, ’also’, ’while’, ’as’ mark the conceptual relationship between sentences
(DISCONN8) and are considered as labels for this task as discussed in (Prasad et al., 2019; Kim et al., 2020). We use
examples from the Penn Discourse TreeBank 3.0 marked for explicit discourse relationship for our experimentation.

5We plan to release sampled example indices for replicability of our results
6https://www.quora.com/share/First-Quora-Dataset-Release-Question-Pairs
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10. Question-answering NLI (QNLI) is a task adapted from the SQuAD by converting it into the sentence pair classification
task (Wang et al., 2018). QNLI is a binary classification task of detecting whether the context sentence contains the
answer to the question.

11. Binary Sentence Ordering (BSO) is a binary classification task to determine the order of two sentences. This task is
similar to pre-training objectives considered in recent works. We use Roc Stories (RocBSO) (Mostafazadeh et al.,
2016) corpus for constructing the dataset for this task.

12. Natural language inference (NLI) is a three-way classification task of predicting whether the premise entails the
hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The Multi-Genre Natural
Language Inference (MNLI) (Williams et al., 2018) corpus consists of sentence pairs from different sources (transcribed
speech, fiction, and government report) annotated for textual entailment.

13. Multi-choice QA is a reading comprehension task wherein given a passage and question, models need to pick up the
right option out of provides ones. Khot et al. (2018) cast the multiple-choice science exam questions into an NLI
structure to convert them to the binary classification task. We use the SciTAIL (Khot et al., 2018) dataset released by
them for our experimentation.

14. Implicit discourse relation classification is a common task of identifying discourse relations between two text spans
or arguments. The Penn Discourse TreeBank 3.0 (PDTB3L1) (Prasad et al., 2019; Kim et al., 2020) contains a
hierarchical annotation scheme (top-level senses, fine-grained level-2 senses) and we use top-level senses comprising
of four labels (expansion, comparison, contingency, temporal) for our experimentation.

15. Emotion detection is a classification task of detecting the emotions from a given text snippet. We use Emotion dataset
(Saravia et al., 2018) which contains Twitter messages with six emotions: anger, fear, joy, love, sadness, and surprise.

B.1. Task Sequences

The task sequences for the Split CIFAR-50 and Split CIFAR-100 experiments were generated by randomly sampling
classes without replacement for each task, similar to Chaudhry et al. (2019). Thus, the sequences were different for every
random seed, but since we ran each method with the same 5 seeds, each method was trained and tested on the same 5
sequences.

For Split YahooQA, we created 5 tasks by using disjoint groups of consecutive classes (e.g. {0, 1}, {2, 3} . . . ). These tasks
were than randomly ordered for each task sequence, and each method was trained and tested using the same 5 random
sequences.

For 5-dataset, we randomly select the following dataset orders:

Seq1 SVHN→notMNIST→Fashion-MNIST→CIFAR-10→MNIST

Seq2 SVHN→MNIST→notMNIST→Fashion-MNIST→CIFAR-10

Seq3 CIFAR-10→SVHN→notMNIST→Fashion-MNIST→MNIST

Seq4 notMNIST→Fashion-MNIST→CIFAR-10→SVHN→MNIST

Seq5 CIFAR-10→MNIST→notMNIST→SVHN→Fashion-MNIST

For 5-dataset-NLP, we randomly select the following dataset orders (first 4 are consistent with (de Masson d’Autume et al.,
2019)):

Seq1 Yelp→AGNews→DBPedia→Amazon→YahooQA

Seq2 DBPedia→YahooQA→AGNews→Amazon→Yelp

Seq3 Yelp→YahooQA→Amazon→DBpedia→AGNews

Seq4 AGNews→Yelp→Amazon→YahooQA→DBpedia
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Table 4: 15-dataset-NLP: Task/Dataset description and statistics. All tasks are either single sentence or sentence pair
classification. |Train|, |Dev|, |Test| denotes the number of examples in train, dev, test splits respectively. |L| denotes the
number of classes for each tasks.

Task Dataset/ Domain(s)/ |Train| |Dev| |Test| |L| Metrics
Corpus Text source(s)

Linguistic CoLA Journal articles 7,695 856 1,043 2 Matthews
Acceptability & books correlation

Boolean Question BoolQ Google queries, 8,483 944 3,270 2 Acc.
Answering Wikipedia passages

Sentiment Analysis SST-2 Movie reviews 9,971 873 872 2 Acc.

Paraphrase Detection QQP Quora questions 10,794 4,044 4,043 2 Acc. & F1

Q & A Categorization YahooQA Yahoo! Answers 13,950 4,998 4,998 10 Acc.

Review Rating Yelp Business reviews 12,920 3,999 3,998 5 Acc.
Prediction

Event Factuality Decomp FactBank 10,176 4,034 3,934 2 Acc.

Argument Aspect AAC Web documents 10,893 2,025 4,980 3 Acc. & F1
Detection

Explicit Discourse DISCONN8 Penn Discourse 9,647 1,020 868 8 Acc. & F1
Marker Prediction TreeBank

Question Answering QNLI Wikipedia 9,927 5,464 5,463 2 Acc.
NLI

Binary Sentence RocBSO Roc story, 10,000 2,400 2,400 2 Acc.
Order Prediction corpus

Natural Language MNLI speech, fiction, 11,636 4,816 4,815 3 Acc.
Inference govt. reports

Multi-choice Science SciTAIL Science exams 11,145 1,305 1,304 2 Acc.
QA

Implicit Discourse PDTB3L1 Penn Discourse 13,046 1,183 1,046 4 Acc. & F1
Relation Classification TreeBank

Emotion Emotion Twitter 9,600 2,000 2,000 6 Acc. & F1
Detection

Seq5 YahooQA→Yelp→DBPedia→AGNews→Amazon

For 15-dataset-NLP, we randomly select and use the following 5 dataset orders:

Seq1 Decomp→BoolQ→AAC→Yelp→DISCONN8→SST-2→QQP→YahooQA→QNLI
→RocBSO→MNLI→SciTAIL→CoLA→PDTB3L1→Emotion

Seq2 CoLA→QQP→MNLI→QNLI→Emotion→SST-2→BoolQ→Decomp→AAC→SciTAIL
→RocBSO→Yelp→PDTB3L1→YahooQA→DISCONN8

Seq3 SciTAIL→BoolQ→SST-2→AAC→DISCONN8→YahooQA→QNLI→RocBSO→PDTB3L1
→Emotion→Decomp→MNLI→QQP→CoLA→Yelp

Seq4 DISCONN8→QNLI→CoLA→YahooQA→AAC→SciTAIL→PDTB3L1→Emotion
→Decomp→RocBSO→QQP→Yelp→MNLI→BoolQ→SST-2

Seq5 Emotion→SST-2→RocBSO→YahooQA→AAC→MNLI→CoLA→DISCONN8→QQP
→QNLI→Decomp→PDTB3L1→SciTAIL→Yelp→BoolQ
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C. Loss Landscape
C.1. Linear Interpolation Loss

In Figure 4 we present additional linear model interpolation visualizations as described in Section 5.3. Specifically, we
track the Task 2 test loss as we interpolate from the model checkpoint after training on Task 2 (w2) to the other checkpoints.
These plots show that the trends presented in Figure 3b holds for Task 2 as well, thereby verifying that pre-trained initialized
models lead to flatter task minima for subsequent tasks. Pre-trained initialized models experience a much more gradual
increase in the loss compared to the randomly initialized models.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

10

20

30

40

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(a) 5dataset—1 epoch

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

2

4

6

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(b) Split CIFAR-50—1 epoch

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

5

10

15

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(c) 5dataset—5 epochs

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0

2

4

6

8

10

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(d) Split CIFAR-50—5 epochs

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.5

1.0

1.5

2.0

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(e) 5-dataset-NLP

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.2

0.4

0.6

0.8

Lo
ss

Paths
w2 w3 No PT
w2 w4 No PT
w2 w5 No PT

w2 w3 PT
w2 w4 PT
w2 w5 PT

(f) Split YahooQA

Figure 4: Loss interpolation plots for each dataset. Blue is pre-trained models, red is randomly initialized models. We
interpolate between the checkpoint after Task 2 to the checkpoint after every other task, tracking the loss in the process. In
general, the loss landscape is flatter along these paths for pre-trained initialization models compared to randomly
initialized models.
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C.2. Loss Contours

In this section we present loss contours for Task 1 and Task 2 for all task sequences (refer to Section B.1 for more details) for
5-dataset-NLP, Split YahooQA, Split CIFAR-50, and 5-dataset. For Split CIFAR-50 and 5-dataset, we also present the
loss contours for 5-epoch training. In line with our observation from the sharpness and linear model interpolation analyses,
pre-trained initialized models lead to flatter task minima for subsequent tasks as well.

C.2.1. 5-DATASET-NLP
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Figure 5: Loss contours for Task 1 on 5 task sequences of 5-dataset-NLP. Each contour shows the location of the model
parameters after training sequentially on Task 1 (w1), Task 2 (w2), Task 3 (w3). The top row shows contours for randomly
initialized models (w/o PT) and the bottom row shows contours for pre-trained initialized models (w/ PT).
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Figure 6: Loss contours for Task 2 on 5 task sequences of 5-dataset-NLP. Each contour shows the location of the model
parameters after training sequentially on Task 2 (w2), Task 3 (w3), Task 4 (w4). The top row shows contours for randomly
initialized models (w/o PT) and the bottom row shows contours for pre-trained initialized models (w/ PT).
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C.2.2. SPLIT YAHOOQA
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Figure 7: Loss contours for Task 1 on 5 task sequences of Split YahooQA. Each contour shows the location of the model
parameters after training sequentially on Task 1 (w1), Task 2 (w2), Task 3 (w3). The top row shows contours for randomly
initialized models (w/o PT) and the bottom row shows contours for pre-trained initialized models (w/ PT).
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Figure 8: Loss contours for Task 2 on 5 task sequences of Split YahooQA. Each contour shows the location of the model
parameters after training sequentially on Task 2 (w2), Task 3 (w3), Task 4 (w4). The top row shows contours for randomly
initialized models (w/o PT) and the bottom row shows contours for pre-trained initialized models (w/ PT).
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Figure 9: Loss contours for Task 1 on 5 task sequences of Split CIFAR-50 with 1 epoch of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 1 (w1), Task 2 (w2), and Task
3 (w3). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 10: Loss contours for Task 2 on 5 task sequences of Split CIFAR-50 with 1 epoch of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 2 (w2), Task 3 (w3), and Task
4 (w4). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 11: Loss contours for Task 1 on 5 task sequences of Split CIFAR-50 with 5 epochs of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 1 (w1), Task 2 (w2), and Task
3 (w3). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 12: Loss contours for Task 2 on 5 task sequences of Split CIFAR-50 with 5 epochs of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 2 (w2), Task 3 (w3), and Task
4 (w4). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 13: Loss contours for Task 1 on 5 task sequences of 5-dataset with 1 epoch of training on each task. Each contour
shows the location of the model parameters after training sequentially on Task 1 (w1), Task 2 (w2), and Task 3 (w3).
The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for pre-trained
initialized models (w/ PT).
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Figure 14: Loss contours for Task 2 on 5 task sequences of Split CIFAR-50 with 1 epoch of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 2 (w2), Task 3 (w3), and Task
4 (w4). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 15: Loss contours for Task 1 on 5 task sequences of Split CIFAR-50 with 5 epochs of training on each task. Each
contour shows the location of the model parameters after training sequentially on Task 1 (w1), Task 2 (w2), and Task
3 (w3). The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for
pre-trained initialized models (w/ PT).
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Figure 16: Loss contours for Task 2 on 5 task sequences of 5-dataset with 5 epochs of training on each task. Each contour
shows the location of the model parameters after training sequentially on Task 2 (w2), Task 3 (w3), and Task 4 (w4).
The top row shows contours for randomly initialized models (w/o PT) and the bottom row shows contours for pre-trained
initialized models (w/ PT).
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